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1. Introduction 

This document is a final report describing the research performed under contract F19628-95- 
C-0212, on "Towards Modeling the Magnetospheric Space Plasma Environment."  The 
proposed research program initially incorporated the efforts of two scientists who were 
eliminated from the contract due to Air Force budgetary constraints and reallocation 
strategies.  This program modification impacted Dr. Jay Albert (a co-Principal Investigator) 
and Dr. Steve Anderson (a Post-Doctoral Research Associate).  The modified program was 
implemented during the early stages of the funding period.  Prof. Michael Silevitch and Dr. 
Elena Villalon redefined the research program in concert with the priorities articulated by the 
contract monitor.  The research was focused into three different related areas.  These were: 

(A) A study of nonadiabatic particle orbits and the electrodynamic of the coupled 
magnetosphere-ionosphere auroral arc system. 

(B) The generation of VLF chorus in the inner plasma sheet, and its relevance to the 
precipitation of the electrons that form the diffuse aurora. 

(C) A study of ionospheric modification research and the experimental results from the 
Oedipus C satellite. 

The next section describes the three research areas.  Following this are copies of the 
publications that resulted from the research investigations. 

2. Description of Research 

This section gives more detailed synopses of the research areas that were investigated during 
the period of the contract. 

(A)      A study of nonadiabatic particle orbits and the electrodynamics of the coupled 
magnetosphere-ionosphere auroral arc system. 

In this area, we investigated the characteristics of oxygen ion orbits in the presence 
of spatially varying electric and magnetic fields.  Specifically, we compared analytical and 
numerical solutions for field structures characterized by spatial variations in a direction 
corresponding to latitudinal variations near the Harang Discontinuity Region.  In developing 
our ideas, we have continued to incorporate the effects of spatial magnetic field gradients 
into our study of the oxygen ion orbits.  Moreover, we have shown that the large scale 
gradients in both the magnetic and electric fields can create density striations due to phase 
bunching effects. lo 

During this contract, Professor Silevitch has been working with Paul Rothwell at the 
Air Force Research Laboratory and with Lars Block and Carl-Gunne Falthammar at the Royal 



Institute of Technology in Stockholm, Sweden.  As a result of this collaboration, a new 
theoretical description of the magnetospheric generator and its subsequent coupling to the 
ionosphere has been developed.  Papers and an accepted manuscript related to this work and 
included in this report are as follows: 

1. P.L. Rothwell, M.B. Silevitch, L.P. Block and C-G. Falthammar, "Inertial Currents and 
Substorm Outsets," Proc. Third international Conference on Substorm (ICS-3), ESA 
SP - 389, pp. 447-452 (1996). 

2. P.L. Rothwell, M.B. Silevitch, L.P. Block, and C-G. Falthammar, "0+ Phase Bunching, 
Oblique Alfven Waves and Auroral Arcs," Physics of Space Plasmas, Number 15, 
pp. 289-294 (1998). 

3. M.B. Silevitch, P.L. Rothwell, L.P. Block, and C-G. Falthammar, "0+ Phase Bunching 
as a Source for Stable Auroral Arcs," J. Geophys. Res., Manuscript accepted for 
publication. 

(B)      The Generation of VLF chorus in the inner plasma sheet, and its relevance to the 
precipitation of the electrons that form the diffuse aurora. 

The plasma sheet is a region of low plasma density where linear and non-linear waves 
and particle dynamics are very important.  Quasi-electrostatic waves are believed to be 
responsible for the diffuse aurora precipitation.  There exist two kinds of waves that can 
effectively interact with electrons.  They are the electron cyclotron harmonic waves (ECH) 
and the electromagnetic whistler waves.  Whistler waves that propagate near the resonance 
cone can satisfy the resonance conditions interacting with electrons in the energy range from 
about 1 to 10 keV. 

In the article by Villalon and Burke, J. Geophys. Res. (1995) we proved the efficiency 
of the interactions between the electrons and a broad coherent frequency spectrum of waves 
such as the one found in the hiss-triggered chorus emissions.  This was due to second-order 
resonant interactions that compensate the inhomogeneities of the magnetic field with the 
frequency variations.  Thus waves and electrons stay in gyroresonance for extended distances 
along geomagnetic field lines.  This is to be contrasted with the more traditional theory of 
first-order resonant interactions, which does not compensate for the inhomogeneities with the 
frequency variations.  For first-order interactions, the changes in the particle's physical 
parameters such as pitch-angles and energies are linear with the electric field's amplitudes. 
For second-order resonances we were able to prove that due to the frequency variations, the 
changes of the particles' physical parameters were proportional to the square root of the 
electric field amplitudes.  This is an important result that can effectively account for the 
formation of the diffuse aurora, since the field amplitudes that are known in the plasma sheet 
from CREES and other experiments, are small. 



Because of the relevance of our theory of second-order interactions, we investigated 
the generation of chorus emissions near equatorial regions of the inner plasma sheet.  In our 
article, Villalon and Burke, J. Geophys. Res., (1997) nonlinear interactions between plasma 
sheet electrons and nearly monochromatic whistler wave packets were extensively studied. 
For electric fields that exceed those of the background plasmaspheric hiss, electrons become 
bunched in phase space and wavelets are generated by second-order resonant interactions that 
have frequency spreads that depend on inhomogeneities and plasma parameters. 

(C)      A study of ionospheric modification research and the experimental results of the 
Oedipus C satellite. 

This third area of research was not part of the original 1995 proposal.  It was 
motivated by the ionospheric observations of the recent Oedipus C rocket experiment.  In our 
discussions with our contract monitor it was concluded that it was of high interest to the Air 
Force to work with the data generated from this experiment.  Oedipus C was a tethered 
double subpayload satellite that was launched over the auroral ionosphere and that reached a 
maximum of about 800 km.  The forward and aft payloads have electron detectors from about 
20 eV to 20 keV.  The transmitter swept frequencies from below 25 kHz to 8 MHz.  Sounded 
accelerated electrons were observed by both sub-payloads for frequencies at and below the 
plasma frequency, and between the electron gyro- and upper hybrid frequencies. Those two 
frequency intervals are within the range of propagation of the quasi-electrostatic whistler and 
Z-eigenmodes.  In our paper (Huang, et al.) J. Geophys. Res. (1999) there is a very extensive 
description of the experiments and the results on sounded accelerated electrons (SAE), which 
were observed by both payloads over large frequency and pitch angle ranges.  To explain the 
experimental observations a second paper has been written and submitted to Radio Science, 
which contains analytical models on wave propagation and electron acceleration.  The quasi- 
electrostatic W- and Z-modes are treated in a warm plasma, and their dispersion 
characteristics are described as functions of plasma parameters that require that the frequency 
of the plasma be smaller than that of the elctron cyclotron waves.  The W- and Z- plasma 
eigenmodes can efficiently interact with the secondary electron population and with the 
primary auroral electrons.  A model for electron acceleration is presented and described 
within the context of non-linear plasma theory. 

Papers and manuscripts related to this work and included in this report are as follows: 

1. E. Villalon and W.J. Burke, Pitch Angle Scattering of Diffuse Auroral Electrons by 
Whistler Mode Waves, J. Geophys. Res., Vol. 100, No. A10, pp. 19,631-19,369. 
October 1, 1995. 

2. E. Villalon and W.J. Burke, Theory of Quasi-Monochromatic Whistler Wave 
Generation in the Inner Plasma Sheet, /. Geophys. Res., Vol. 102, No. A7, p. 14,381- 
14,395, July 1, 1997 



3. C.Y. Huang, W.J. Burke, D.A. Hardy, M.P. Gough, H.G. James, E. Villalon, and L.C. 
Gentile, Electron Acceleration by MHz Waves during OEDIPUS C, J. Geophys. Res., 
1999 

4. E. Villalon, Theory of Plasma Waves Propagation and Electron Heating in a Tenuous 
Ionospheric Plasma, submitted to Radio Science, 1999 
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ABSTRACT 

When magnetic field lines are sufficiently stretched during 
the substorm growth phase, in the equatorial plane the 
earthward ExB ion drift velocity can become comparable to 
the ion gyration velocity. Under these conditions inertial 
currents can become quite important. Using a two- 
dimensional model we find that 0+ ions injected from the 
ionosphere into the equatorial plane at high latitudes will 
drift eastward at radial distances less than -10 RE because 
the inertial drift dominates and westward at distances closer 
to the earth because the magnetic gradient drift dominates. 
The inertial eastward drift gives rise to a current which in 
terms of JxB is consistent with the convective deceleration 
of the earthward drift velocity due to higher values of B. 
Similarly, momentum balance requires that the convective 
acceleration of the westward drift velocity should be 
consistent with a tailward inertial current. Therefore, an 
equatorial current wedge system with eastward and 
tailward current components naturally arises from the ion 
dynamics. In a future paper a three-dimensional treatment 
will determine whether curvature drift masks the eastward 
inertial drift of the oxygen ions. 

1. INTRODUCTION 

Daglis and Axford [Ref. 1] have emphasized the importance 
of 0+ in the substorm process. Their detection of a 
correlation between the enhancement of upward flowing 
oxygen ions in the auroral zone and magnetic activity is 
intriguing. Here we theoretically explore this result utilizing 
the fact that the higher mass of the 0+ is more likely to give 
rise to inertial effects. These effects become important in the 
magnetotail where the drift velocity (E^/B) is comparable to 
the particle's gyrovelocity. 

Parker [Ref. 2] showed, given the validity of the usual 
assumptions for MHD, that particle dynamics lead to 
transverse currents that depend only on the gradient of the 
pressure associated with those particles. This important 
result allowed the replacement of the single particle 
equations with the thermodynamic equation of state in 
cletenriining the perpendicular currents. Vasyliunas [Ref. 3] 
in a seminal paper applied these results to magnetospheric- 
ionospheric coupling which has formed the basis for much 
of recent magnetospheric research. It may, however, be 
questioned whether the the required assumptions of MHD 
in the near-earth magnetospheric environment are satisfied 

-18 -10 -14 
X/RE 

Figure 1. The ExB drift distance traveled in one gyroperiod 
divided by the scale size of the magnetic field as determined 
from Ref. 7. This ratio increases linearly with Ey. 

in the presence of 0+? If the conditions for MHD are 
satisfied and magnetic field lines convert with the particles 
then the stability of steady-state convection is questionable 
[Refs. 4,5]. If the conditions for MHD are not satisfied then 

Proc. Third International Conference on Substorms (ICS-3), Versailles. France, 12-17 May 1996. ESA SP-389 (October 1996) 

5. 
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particle effects may mitigate the instability as shown by 
Kivelson and SpencefRef. 6]. 

We have used the simple analytic model of Rostoker-Skone 
[Ref. 7] for the near tail region equatorial magnetic field. 
This model is based on satellite measurements during 
magnetically active times. The equatorial magnetic field is 
assumed to point in the z-direction and varies in the x- 
direction (toward the earth). A cross-tail electric field Ey 

points westward which cause's particles to drift toward the 
earth. We first address the slow flow assumption. This is the 
assumption that the particle undergoes numerous gyrations 
while drifting one scale length in B. The local scale size of 
the magnetic field LB is defined by B/VB. The ion drift 
distance in one gyroperiod is d, = 2TcEy/(Bco) where co is the 
0+ gyrofrequency. The ratio cyLB is shown in Fig. 1 where 
the value of E y = 1 mV/m is used. Note that this ratio is 
larger than 0.1 for X s -10 RE indicating that at these 
distances the flow velocity is not "very small" and that the 
slow flow approximation does not apply for 0+ ions. 

2. INERTIAL CURRENTS-THEORY 

Kd 
dK xd 

K 

dx 

dK 
xd 

yd 

dx 

< — E+<aV> 
M   x       y 

:< — E-U>V> 
M  y 

(3) 

where the symbol o denotes orbit average. As <Vxlf>=Vxd, 
<Vy<i>=V),<)  equations (3) can be expressed as 

xd B 
1+- 

1  dK yd (4a) 

co   dx 

V   --El + iIl.dB 
yd      B    2 5o 8x 

Kd^Kd 
co    dx 

(4b) 

Here we derive the inertial current terms from the single 
particle equations following an analysis somewhat different 
from that of Parker [Ref. 2]. We find two first order 
nonlinear differential equations for the drift velocity 
components Vxd and Vyd. We then show that these 
equations give the correct form for the drift velocity for 
known cases. The equations of motion are 

where the first term on the RHS of the first equation of (4b) 
is the standard ExB drift and the second term describes the 
magnetic gradient drift [Ref. 8]. Orbit- averaged quantities 
are understood. The third term corresponds to an inertial 
drift effect which will be examined in detail below. We now 
consider these equations for specific cases. 

and 

<*W),')     e  c  = — E 
dt M   x ■w^W/),0 

dV(x(t),t)     e 

(1) 

(2) 

Case I: dE^/dx =const., B=const.,Vxd = const. 

Kd = 
co2^ 

Q2 B 

Vyä B 
(5) 

Q2 co 
M dx 

The system is assumed to be homogeneous in y, and e and 
M denote the charge and mass of the ion, respectively, and 
co = e B/M. The cross-tail electric field Ey is treated as 
constant The velocity components are assumed to consist of 
two parts, a purely time-dependent gyrating part Vg and a 
space-dependent drift velocity (V^ and Vyd). Expanding the 
derivatives on the LHS of (1) and (2) and taking an orbit 
average we find that 

Case I agrees with the drift velocity obtained by solving the 
equations of motion explicitly [Ref. 9] and will not be 
repeated here. 

6. 
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Case II: Ex = 0, B=B(x). This case is of primary interest 

v* B 

v -M v* dB   M Ey dB 

*    e 2B2 dx     e BA dx 

<i)   dx 
«1 

(6) 

The above cases show that as the electric and magnetic field 
structure becomes more complicated that the analytic 
expressions for the ion drift velocities also become more 
complex which reflects their enhanced departure from ExB 
drift. This departure results in inertial currents that balance 
the change in momentum of the convective flow. In the 
nightside near-earth magnetosphere these currents may form 
current wedges that are related to the substorm onset They 
also, as is well known, must be consistent with the 
expression 

here in dealing with the outer magnetosphere. Weak inertial 
currents in the x direction can arise from the deviation of 
A V^ from E/B and is given by the following expression 

p V- Q7V) = JxB - VP 

Jx = ne{Vx xd B B2    dx (7) 

where p is the mass density. Implications of equations (6) 
and (7) for the Rostoker-Skone model will be examined 
below. There we find that dV^dx - 0.01 u consistent with 
the assumption stated in equation (6). 

Case III: dEx/dx = const., B=B(x). This is the most 
complicated case and applies where there is a radial electric 
field component in the magnetosphere, such as when the 
Harang discontinuity maps to the equatorial plane. 

Q2 = a) 2-<o —B- 
dx 

(8) 

Case III is analogous to Case II. Now where we have 
assumed that the main contribution to dVyJdx comes from 
the first term in equation (9). See equation (4a). 

(10) 

By subtracting the ExB drift from equations (4a) and (4b) 
one can easily show that this is the case. 

3. INERTIAL CURRENTS -NUMERICS 

We now want to determine the drift velocities by a 
numerical integration of equations (1) and (2). The method 
should be valid even if the conditions for MHD are not met. 
The most direct approach is to integrate a velocity 
component over one gyroperiod. However, this technique is 
not very accurate if the orbit shape and/or size changes 
significantly during one gyroperiod. For example, the 
gyroradius decreases upon entering a region with a positive 
B-field gradient Integration over velocity components 
gives good agreement (one part in 105"6) with theory 
provided either E, or dB/dx is zero. When both E, and 
dB/dx are nonzero then the y-drift velocity is too high by 
20% using the velocity averaging technique. Another 
method for determining the drift velocity is to define the 
orbit center by integrating over either x and y for one gyro- 
period. One then numerically determines the velocity of 
this center. This method works but is noisy due to dividing 
by the gyroperiod twice. One division is for finding the 

" position average and the other for determining the drift 
velocity. However it is noted that one turning point drifts at 
a different speed than the other turning point. We find that 
the most accurate technique for determining the net drift 
velocity is to average the drift speed of the two turning 
points for each velocity component. 

Ex 

yd      B      B3C16    & e B    dx   ' 

e B2 8x2      2  e B2 dx 

Figure 2 shows the y component of the drift speed for H* 
and 0 + using the Rostoker-Skone magnetic field model for 
Case H. For purposes of illustration a 500 ev ion is injected 

(9) at -30 RE with Ey = 1 mV/m. Note that at larger distances 
from the earth this velocity is strongly eastward for 0* 
implying an eastward current. The solid line represents the 
drift   velocity as determined by the numerics with the 

7. 
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Figure 2. The importance of the Ey
2 inertial term (equation (6)) for oxygen at 

larger distances from the earth is illustrated. The short-dashed line represents 
the expected drift velocity due to the magnetic gradient. The bottom portion of 
each figure is the gyroenergy as a function of X in comparison with that 
expected from the conservation of the first adiabatic invariant. 

distance between the small squares denoting a gyroperiod. 
The dashed line (lower) represents the drift velocity as 
determined from equation (6). The upper line (short 
dashes)represents the drift speed as expected by the 
magnetic gradient drift. It is clear that magnetic gradient 
drift does not by itself adequately describe the y drift 
velocity for oxygen at larger distances from the earth. 
Protons, due to their smaller mass, contribute far less to the 

inertial currents. The physical picture is that the cross tail 
current is maintained by gradient-curvature drifting protons 
but is locally weakened by the injection of ionospheric 
oxygen that mirrors in equatorial plane. The degree of 
weakening is proportional to Ey

2 as seen from equation (6). 
This feature could provide a mechanism for local current 
interruption that is required for a substorm onset. The 
bottom part of Figure 2 for each of the ions denotes the 
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gyroenergy as determined from the numerics and 
conservation of the first adiabatic invariant The violation 
of the first adiabatic invariant at smaller X leads to a 
substantial discrepancy closer to the earth. From equation 

d 
to in 

d 
E 

GO 
\ > 

I 

ID 

I 

*— NUMERICS 
- - ANALYTICS 

-17 15-13-11     -9      -7 
X/RE 

Figure 3. The oxygen ions drift earthward at a speed less 
than Ey/B consistent with equation (6). 

(4a) we note that the positive slope of V^ vs. X curve as 
seen in Figure 2 should lead to values of V^ which are less 
than E/B. This is indeed the case as seen in Figure 3. This 

feature implies a weak tailward current which could close 
off the region I and region II currents in the premidnight 
equatorial plane. 

As seen from Figure 2 the oxygen ions drift eastward and 
then westward. This occurs because as the ions drift 
earthward their gyroenergy increases. The westward 
magnetic gradient drift is proportional to the gyroenergy so 
at some point the drift reverses and becomes strongly 
westward. This effect produces a polarization that tends to 
lessen the west-east polarization field due to the charge 
separation of H* and e' caused by gradient-curvature drift. 
A sufficiently strong eastward drift of oxygen ions could 
cause a local enhancement of Ey. This, of course, would 
cause the polarization to spread earthward as the subsequent 
ions experience an enhanced eastward drift. The weakening 
of the westward neutral sheet current by eastward flowing 
0+would lead to dipolarization. Therefore, the presence of 
ionospheric oxygen in the equatorial plane could play a 
direct role in the onset process. In this picture the current 
wedge structure is naturally closed in the equatorial plane 
by single ion dynamics and becomes intensified during 
magnetically active periods when ionospheric oxygen 
becomes more plentiful. [Ref. 1 ]. 

co 
o vry{rnrTr*- 

X/RE 
Figure 4. Proton and oxygen trajectories in the near-earth magnetosphere using the Rostoker-Skone 
magnetic field model with E,, =2/mV/m Note the preferential displacement of oxygen in the eastward (-y) 
direction. 

9. 
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In order to demonstrate the polarization effect we plot 
proton and oxygen trajectories for a number of initial 
energies as shown in Figure 4. All the ion trajectories 
shown in this figure start at -20 RE with Ey set to 2 mV/m to 
emphasize the electric polarization. The initial phase angle 
in all cases equals 90°. 

4. DISCUSSION 

As shown above the enhanced presence of oxygen ions 
during a substorm can lead to magnetospheric -ionospheric 
current structures. In particular, the eastward motion of the 
oxygen ions forms an equatorial generator that could 
partially power the westward electrojet. Huang and Frank 
[Ref. 10] measured the bulk flow of ions in the plasma sheet 
and found that for AE > 600 nT the bulk flow became 
progressively eastward. See their figure 2.This noticeable 
effect is consistent with the enhanced population of oxygen 
during active periods [Ref. 1] and its eastward motion as 
discussed above. Another feature found by Huang and 
Frank was that the earthward bulk flow was smaller than 20 
km/s regardless of the value of AE. This latter result has 
been used by others [Refs. 5] as verifying the slow flow 
condition required by ideal MHD. 

This apparent paradox may be explained by identifying a 
more adiabatic proton population with a flux tube that 
moves according to the formulation of Erickson and Wolf 
[Refs. 4,5]. On the other hand, energetic oxygen ions 
mirroring near the equatorial plane are unlikely to remain 
identified with a single flux tube and, as shown, can 
contribute to the formation of a substorm current wedge. 
Thus, it may be the substorm onset itself marks the 
transition from an ideal MHD configuration to one in which 
single particle effects become important. The current 
arising from the heavy ion drifts must contribute to the 
overall pressure balance through JxB and also allow particle 
leakage through the tail boundaries [Ref. 6 ]. 

During substorm onsets the east-west electric field may be 
significantly higher than 1 mV/m [Ref. 11]. The inertial 
effects described above are enhanced under such 
circumstances. In the future we will look at the localized 
injection of oxygen during a substorm onset and define 
where the resulting current wedge structures should exist. 
Also, it should be noted that the two-dimensional nature of 
our analysis has ignored curvature drift which could 
dominate in the near-earth regions discussed here. Whether 
curvature drift is important or not depends on the magnetic 
field geometry and the pitch angle distribution of the ions. 
This important point is left for a future analysis. 
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Abstract In the earthward drifting magnetotail plasma, phase 
bunching of 0+ ions ( but to a much lesser extent of the H" 
ions) can be caused by, for example, a weak (~ lxlO'9 V/nr) 
electric field gradient [Rothwell et al., 1994]. This leads to 
density striations in the (non-rotating) earthfixed "lab" frame. 
In this scenario the 0+ density striations are seen as a tailward 
propagating source of magnetospheric Alfven waves in the 
moving frame where the hydrogen ions provide the polarization 
current of the wave. If the generated Alfven waves in this frame 
are entrained moving tailward then a transformation to the lab 
frame will yield a static, oblique wave structure similar to that 
discussed by Maltzev et al. [1977] and UalUncrodt and 
Carlson [1978]. The waves propagate from the equatorial 
region to both ionospheres where they are reflected The 
ionospheric boundary conditions when combined with a 
magnetospheric boundary condition allows a solution of the 
wave amplitudes in terms of the striation driver. The frequency 
of the Alfven wave and the associated wavelengths are also 
determined by the striation driver. We find that the magnitode 
of the parallel current at the ionosphere has a spatial resonance 
when the distance between the ionosphere and the equatorial 
plane is equal to a quarter wavelength along B. In that case, the 
magnitude of the parallel current at the ionosphere is on the 
order of 10 uAmr and peaks for striation wavelengths (as 
mapped to the ionosphere) of 10-40 km consistent with 
observations. 

1. Introduction 

There has been many studies of oblique Alfven waves in 
which the propagation and reflection of Alfven waves have 
been intensively examined [Maltzev et al., 1977; UalUncrodt 
and Carbon, 1978; Lysak ,1985, 1986, 1990; Haerendel, 
1983; Borovsky, 1993; Sey/er, 1990,1995; Knudsen, 1996]. 
A few studies have also identified a magnetospheric source. 
For example, the coupling of a compressional wave in the 
equatorial region with a shear Alfven wave could produce a 
Field Line Resonance (FLR) [Chen and Hasegawa, 1974; 
Southwood, 1974 ; Miura and Sato, 1980; Samson and 
Ranldne, 1994; Samson etal, 1996]. In this work we 

investigate density striations in the near-earth nightside 
magnetosphere as a possible magnetospheric source of an 
oblique Alfven waves. The basic idea is that the magnetic field 
near local midnight can become quite extended near the 
equatorial plane such that the oxygen ions exhibit nonadiatic 
behavior while the hydrogen ions remain adiabatic. See 
Rothwell et al. [1994]. In the present model density striations 
are assumed to be produced by the phase bunching of the 0+ 

ions as they enter a region of an extended electric field gradient 
as shown by Rothwell et al. [1994]. Other mechanisms can 
also be operative. For example, local acceleration occurring 
over short time scales by magnetic dipolarization can cause a 
similar effect [Delcourt et al., 1996]. Associated with the 
density striations is a periodic static spatial variation of the 
radial current which when viewed in the drift frame of the 
adiabatic hydrogen ions is seen as tailward moving current 
wave. In this frame the current wave has a wavelength given by 
the distance between striations and a frequency given by the 
corresponding wavenumber times the drift velocity. This 
defines the frequency of the oblique wave in the drift frame. It 
also defines the wavelength of the Alfven wave along the field 
line throush the dispersion relation. If one doppler shifts the 
wave frequency in the moving frame to that in the laboratory 
(non-rotating) frame one finds the later to be zero consistent 
with the static nature of the source. The oblique Alfven wave 
forms a static wave pattern in the spirit of Maltzev etaL[\ 977] 
andMallincrodt and Carlson [1978]. 

There are two boundary conditions. One boundary condition 
requires j2 to be zero at the equatorial plane (z = 0) consistent 
with symmetry of the two ionospheres. The other boundary 
condition determines the reflection coefficient of the oblique 
Alfven waves at the two ionospheres. Together they fully 
determine the wave amplitude in terms of the striation driver 
and the wave phase at the ionosphere. By imposing a current 
node at the equatorial plane and having the wavelength fixed 
we find that the parallel current is a maximum at the 
ionosphere if the ionosphere is located a quarter wavelength 
from the equatorial plane. This is a well known resonant 
relation seen in resonant cavities. 

The goal of the present work is to determine whether the 
proposed mechanism can lead to reasonable values of the 

MIT Center for Theoretical Geo/Cosmo Plasma Physics, Cambridge, MA 



parallel current at the ionosphere given reasonable values for 
the magnetospheric input parameters. In this paper we have 
used several assumptions that should be stated. The difference 
in dynamical behavior between the oxygen and hydrogen has 
already been mentioned. The treatment here is not self- 
consistent in that the effect of the wave fields on the striations 
has not been taken into account Also, we assume that the 
Alfven speed is constant along the field line and that the static 
wave structure has time to form. Finally, we do not consider 
wavelengths below or at the electron inertial length (6 km) 
because of the evanescent property of these waves in the 
ionosphere [Borovsky, 1993]. Therefore, kinetic Alfven waves 
as described by Goertz and5aywe/Z[1979] are not treated here. 

Figure 1. Cartoon of the concepts involved. O* ions drifting 
earthward with a drift speed Vxo can create density striations through 
phase bunching. This acts a source of oblique Alfven waves that 
propagate to the two ionospheres. 

Figure 1 illustrates the concepts descibed above. The 0+ 
density striations are represented by a sinusoid along the 
equatorial plane. The waves emanate towards each ionosphere 
creating density (conductivity) perturbations as shown. If the 
ionospheres are symmetrically located relative to the equatorial 
plane then the magnetospherically generated waves at each 
ionosphere will be at the same phase and the conductivity 
perturbations will be conjugate. 

In the coordinate system used here x points earthward, y 
towards the west and z is parallel •- ■■ v« earth's magnetic field 
With z=0 denoting the equatorial. jie northern ionosphere 
is located at z = L^ and the souuicm ionosphere at z = -Lj,. 

2. Magnetospheric Theory 

With the above scenario in mind let us now analyze the 
generation of the oblique Alfven wave. We found in Rothwell 
et aL [ 1994] that in the presence of an electric field gradient the 
drift speed can be much faster for the heavier ions. This feature 
elongates the separation of the turning points as seen in the 
laboratory (non-rotating) frame and enhances the presence of 

the density striations due to phase bunching. The protons 
remain adiabatically trapped and ExB drift through the O* 
striations that form the wave source. 

The presence of ion density striations leads to an additional 
x-component of the current that is carried by electrons. This 
can be understood as follows. In regions of enhanced ion 
density charge neutrality requires that electrons flow up the 
field line to neutralize the additional positive charge. To make 
the problem tractable we assume that the ions originated 
outside the striation region and are not gained or lost along the 
magnetic field lines. This means that their flux in the x- 
direction is conserved. If N^ is the ambient 0+ density outside 
the striation region and Sn^ the density perturbation due to the 
striations we have 

J*.*'Wo~-W. °'n B 
:Ö7i y 

B 
0) 

Note that in Eq. (1) electrons are the current carriers forming 
a spatially varying current structure which maintains charge 
neutrality with the O* density striations. The density 
perturbation exponentially decreases from the equator with a 
scale length 1^ and has a wavenumber in the x direction equal 
to k„. (In Rothwell et al. [1994] k, is determined by the drift 
speed of O* ions as they enter a region of a large scale electric 
field gradient) There are other mechanisms, such as that 
reported by Delcourt et aL [1996], that can also produce 
density striations. With these assumptions Eq. (1) becomes in 
the lab frame 

J'xsaurcr = "« ö/z^expC-r/Z,) exp( ik0x)       <2) 
y 

where bn^ is the amplitude of the 0+ number density 
amplitude and V,,, is the drift speed (E/B). 

Now let us recast Eq. (2) in terms of the moving plasma 
coordinate frame. As the plasma convects towards the earth at 
a speed V^ a current wave is seen in the moving frame 
moving tailward at the drift velocity and with a frequency 
CJ^V^. This current wave is a source of Alfven waves in the 
moving frame and may be rewritten in this frame as 

While the incipient untrapping of the oxygen ions provides the 
source current for the Alfven waves the protons remain 
adiabatic and provide the polarization current that allows the 
Alfven wave to propagate. Details are given in the Appendix. 

If we now doppler shift the wave field, as derived in the 
Appendix, to the the lab frame the wave is seen as static. This 
should hold for airy spatially periodic current driver. Therefore, 
as a general rule a drifting plasma through a spatially periodic 
current structure produces Alfven waves in the moving plasma 
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frame such that when doppler shifted (x'  - x- Vj, 
=fcV =4^) to the lab frame these waves will be preceded 

^Staäc Haerende! [1983]. The result is 

Ex = Exi exp i (k0x -kzz) *E„exp i (fc0x+ kzz) -... 

;«^»/^-^T,ft^ (4) 

In the lab frame the wave magnetic field will also be static 
Now the drifting of the moving plasma past a stationary By wiU 

induce an E.-VJE./VA * tbe lab frame that doesn't exist in 
the moving frame. This electric field component is necessary 
for the total electric field to be perpendicular to the total 
magnetic field in both the laboratory and moving frames as is 
Jiredbythe well known invariance of E-B between moving 
frames [Landau and Lifihitz, 1959]. Therefore, the total 
magnetic field is an equipotential and trapped electrons cannot 
beacceleratedalongB by the wave unless the electron s inertia 
is considered. 

It can be shown that [Maltzev et ai, 1977] 

■£'■' 

* 

dEr 

V 
VoK dz 

(5) 

and the inhomogeneous solution can be recast in terms of E* 
and E» through an equatorial boundary condition 

The equatorial boundary condition arises from the source 
wave propagating to both ionospheres. We also assume m Uns 
model that the wave structure in one hemisphere is decoupled 
from the wave structure in the other. They are related only in 
that they have a common source. In that case the j, m each 
hemisphere, as defined by Eqs. (4) and (5), is zero at z - 0. 
This leads to 

M°V"L[VUe6n0VJ 
(6) 

The ionosphere defines another relation between E, and % 
through the conservation of current at the reflecting surface. 
Here "we use coordinates consistent with the northern 
ionosphere. We equate the jm of the wave to the gradient of L 
P in the ionosphere where E, is determined from the 
homogeneous solution Eq. (A4). The result is 

where E^ is the inhomogeneous part of the solution shown in 
Eq. (A3). At larger distances from the equator the 
inhomogeneous solution goes to zero and the density 
perturbation source on the Alfven wave is effected by the 
constraint Eq. (6) on the incident and reflected amplitudes. 

3. The Northern Ionosphere 

£=- ^£,.exp(-2iiILi) (7) 
P» 

The symbol 2L, denotes the background Pedersen conductivity. 
The exponential term takes into account the phase of the wave 
as it impinges on the ionosphere.The symbol S0 - (*i„ VJ 
represents the conductivity of the Alfven wave. By combining 
Eqs (6) and (7) one obtains a.solution for the wave that 
depends on both magnetospheric and ionospheric parameters 

Insight can be gained by looking at the wave electric field 
and parallel current at 7=1^ (northern ionosphere). 

SAexpaV) 
£«&£,«) = s   cos(k:LJ + i Su sin(KLin) 

po 
(8) 

tf.SA^expOV) 
.U*A»)= F^l^cosiKLJ +iS0sin(^LiB)] 

The parallel wave current at the ionosphere is dependent on 
the phase at which the wave reflects off the ionosphere. For 
example, if k, I* = ±*/2 then j Js proportional to the 
ionosphericconductivity.ff k.L^iTCmenjM^proportion^ 

to the Alfven conductivity along Br Inspection at fcq. W 
reveals the resonant nature of the phase relation due to the 
ionosphere being much more conductive tan the wave 
medium The reasonfor this was stated above. That is, with the 
wavelength and one boundary condition fixed in the equatorial 
region the wave amplitude is sensitive to the location of the 
second boundary condition in analogy with a resonant cavity. 
The condition KK^^2 *> of course, the usual quarter 
wavelength criterion. Fx is a scale factor between the 
ionosphere and the equatorial plane. 

A similar analysis can be done for the southern ionosphere. 

4. Self-Consistent Ionospheric Reflection 

So far we have investigated the production of oblique Alfven 
waves by density striations in the equatorial plane. These 
waves produce also conductivity perturbations m the two 
ionospheres. When coupled to the background ionospheric 
electric fields these perturbations provide an additional source 
of parallel current in the manner suggested by Maltzev et al. 
F19771 The parallel current carried by the waves at the 
northern ionosphere is given by Eq. (8). The positive 
conductivity perturbation produced by this current is given by 
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62p(Ltm) = -Gj„ 

G_   (Oh)eh 

2a 2   B2 
r    po    i 

(9) 

which results from a balance between the recombination and 
ionization rates. We use Qh = .5 ion/incident electron for the 
ionizationrate produced by j^,. The ionospheric integration 
height h equals 20 tan, the recombmarion rate or= 1x10"" mVs, 
2,» = 20 S and the magnetic field value at the ionosphere, B; 

= 4x10-3 T. This gives G = '2.5x10s SAA/m2). The z axis is 
parallel to the ambient magnetic field so that a positive ]m 

corresponds to an incident current in the northern ionosphere 
while a positive jro corresponds to an exiting current in the 
southern ionosphere. For the sake of simplicity we also assume 
Eq. (9) holds for currents into the ionospheres (upward moving 
electrons) although this is not strictly valid. 

6 2jA-„) = ~ GJtJ.Lin)   Northern Ionosphere 

ö 2 (-Z,^) = + <J/ru(-Iu) Southern Ionosphere 
(10) 

In the two ionospheres we have a height integrated current 

J^^iE^-RzE^Gj^ (ii) 

where the minus corresponds to the northern ionosphere and 
the plus sign to the southern ionosphere. Here E,,, is the 
southward component of the ambient ionospheric electric field 
and Eyo is the westward component Following Maltzev et cd. 
[1977] current continuity at the northern ionosphere is given by 

Ex= [£,nexp(-/ifc.z) +Er"exp(+ik:z)] sxp(ikox) 

dE 
X 

17 JzJU'Zpo^r-WM (12) 

T| = Gk^ [E^ -RxE^idimensionless) 

where k» is the striation wavenumber as scaled to the 
ionosphere with a scale factor Fx = .032. R2 is the ratio of the 
Hall to Pedersen conductivities. From Eq. (12) we calculate E," 

E;=E," exp(-2 ikzLin) t yyi^'in 
2 „(1+iTÜ + S, 

(13) 
po 

where 'n' denotes the northern ionosphere. Note that the self- 
consistent reflection adds an imaginary component to the 
Alfven conductivity which is equivalent to an additional phase 
shift in the reflected amplitude. We can determine when this 

effect becomes important by using the above values. We find 
from Eq. (12) TJ = 10* k* when the background ionospheric 
electric fields contribute a factor of 4x10"2 V/m. The 
ionospheric wavelength at which T)2U becomes comparable to 
2_ is 1.25 tan which is significantly shorter than the scale size 
stated in our assumptions. 

5. Numerical Results 

The key numerical requirement of our model is that the 
distance Ls between the equatorial plane and the ionospheres is 
consistent with the quarter wavelength criterion. This is 
consistent with the distance between the ionosphere and the 
equatorial plane in the auroral region being about 10 RE . 

20 40 60 SO 100        120        140 

x wovelength at ionosphere   (km) 

160       ISO 

Figure 2. A contour plot of the parallel current ( uA/m2) carried by 
the oblique Alfven wave as seen at the ionosphere. The abscissa 
denotes the equatorial source wavelength as mapped to the 
ionosphere. Note the maximum values occur at the quarter 
wavelength criterion and for 1CM0 km wavelengths. 

Now let us look at the numerical viability of our model. 
First, we calculate the value of E;,, as defined in Eq. (6) as a 
fimction of wavelength in the ionosphere for various values of 
the Alfven speed. The chosen parameter values are V^ = 20 
km/s, on, =lxl0s O* ions/m3 and Lz = 2 RE. In this model the 
wave amplitude and, hence, the strength of the magnetosphere- 
ionosphere interaction scales as the Alfven speed. This implies 
more intense wave fields exist on field lines where the particle 
density has been depleted and may imply a stronger 
magnetospheric-ionospheric coupling during substorm growth 
periods when there is a substantial flux of upflowing 0+ 

[Daglis et al, 1998\. 
Figure 2 shows a contour plot of the resulting parallel wave 

current at the ionosphere for VA = 2.5x10s m/s. We use a 
scaling factor of Fx=0.032 which corresponds to a dipöle field 
model at L = 6.5. The ordinäre denotes the z phase of the wave 
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t the ionosphere in radians and the abscissa denotes the 
cfriation wavelength as transformed to the ionosphere. The 
ontours are in units of nA/m2. Note that for the parameter 

values used that we obtain a maximum parallel current of some 
tens of microamps per meter squared. These maximum values 
are obtained at the quarter wavelength condition and for 
ionospheric wavelengths of tens of kilometers consistent with 
larger auroral forms. Therefore, we argue that even quite 
conservative values of the magnetospheric parameters leads to 
realistic values for the parallel current at the two ionospheres. 

Now let us look at the resonant nature of the Alfven wave. 
Recall that the oblique Alfven wave amplitude is determined by 
tfae striation source as well as the magnetospheric and 
ionospheric boundary conditions in'a manner equivalent to that 
of a resonant cavity. Figure 3 dramatically demonstrates this 
effect. This is a plot of the parallel current for x=0 at the 
ionosphere as a function of the wave phase at the ionosphere 
denoted in units of n. See Eq. (8). 

any increase in kj would cause the resonance criterion to be 
satisfied on field lines closer to the earth. This could be related 
to the observed equatorial motion of auroral arcs under 
substorm growth conditions when there is a substantial O* 
population in the near earth magnetosphere [Daglis et al, 

1998 ]. 

6. Summary and Conclusions 

We have identified density striations formed by nonadiabatic 
oxygen ions as a possible magnetospheric source for oblique 
Alfven waves. It was found that magnetospheric and 
ionospheric boundary conditions lead to a resonant type 
behavior. Reasonable input parameter values imply 10 uA/m2 

parallel currents at the ionosphere with the maximum values 
occurring for structures on the order of 10 - 40 km, a width 
consistent with observations of auroral arcs {Marklund et al, 
1984]. Thus, even with the stated simplifications results 
consistent with observations are obtained. 

E 

~\r 

0.00     0.25 0.50 0.75 1.00 1.25 

x in units of Pi 

1.50 2.00 

Figure 3. The resonant nature of the magnetosphere-ionosphere 
coupling by the oblique Alfven wave is demonstrated. The resonance 
occurs when the distance between the ionosphere and the equatorial 
plane satisfies the quarter wavelenth criterion. It arises from the 
ionospheric conductivity being much larger than the Alfven (wave) 
conductivity. 

Clearly, the quarter wavelength resonance can be seen. The 
resonance at kl, = 3«/2 requires that VA be one third the value 
necessary for the kX; = TC/2 resonance for constant Vxo. 
Alternately the same criterion is satisfied if VA remains 
constant but V^ increases by a factor of three. Note that the 
parallel current outside the resonance regions is not zero but 
differs by a factor ofZ^ß.a ~ 50 from the parallel current at 
resonance. The width of the resonance is determined by Su. 
The creation of an 10 - 40 km arc structures, such as those 
observed by Marklund et al. [1984], by oblique Alfven waves 
depends on the length of the field line, the plasma density along 
the field line, the x wavelength of the magnetospheric driver 
and the drift speed of the plasma. One obvious effect is that 

7. Appendix 

Here we derive the Alfven wave in the plasma frame. In 
addition to the usual polarization current we also now have a 
time-dependent source term due to the striations. We assume 
that the 0+ striations can be approximated by a sine 
dependency in x and an exponential dependence in z. i.e. 

bjx, = -e V„6no.expi(üirt' + k0x')exp(k -z'/L.) (Al) 

where a>r=k, V„ is the frequency of the current source as seen 
in the plasma (moving) frame. The primed variables denote 
quantities in the moving frame. Eq. (Al) represents the 
oscillating source current in the moving frame that is formed by 
the nonadiabatic O* ions. These ions do not participate in the 
propagation of the Alfven wave near the equatorial plane. In 
this region, according to our model, the wave is carried by 
adiabatic (cold) protons. 

The equation for the Alfven wave is 

?E„ 1 S2^ 

(A2) az2     V2 dt'2 

where the LHS of Eq. (A2) is derived in the usual manner. The 
density in VA is assumed equal to the proton mass density. This 
leads to an inhomogeneous solution for E* of the form 

Exin = Ea exp</<*>,t' + kax') exp( -z'lL„) (A3) 

which leads to the solution shown in the second term on the 
RHS of Eq. (4) in the text The homogeneous solution is 

E^=Ei^[i{k0x-k.zy[+Ereavli(k0x + ksz)\ (A4) 
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where k0 and k,. =V:to k/VA are the wavenumbers in the x and 
z direction respectively. The latter relation is equivalent to 
setting the frequency of the AlfVen wave equal to the frequency 
of the source wave. 

The generated AlfVen waves are entrained by the source 
wave and also move tailward with a phase velocity V„ and 
wavenumber k„. From Eq. (A2) we find a total solution in the 
lab frame as given by Eq. (4). 
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ABSTRACT 

99 r™= lead to density s«riauons in «he GSM frame. 0* densityRations in the earthward 
dZg plasma frame are seen as a tailward propagating source of Alfven waves «here the 
hvdrogen ions provide the polarization current of the wave. A trarrsformaüon ° ^1^7 
wffi yield a static, oblique wave structure similar to that dvscussed byMotav e, al[l9TT] and 
Z n  IZI,LH Carlson T19781 The waves propagate from the equatorial reg.on to both 
*        :;1X are reScted The ionospheric boundary condition when combined w,th a 
L3ospLricboundary condition allows a solution of the wave amplitudes m terms of the 
magnetospher c oounoa^ f ^ ^^ wave and the associated wavelengths are also 
SÄ Sat^S. Welnla, the magnitude of the parallel current denshy at the 

Lsphere „Is a spatial resonance "^^^£Ä£ £Ä« 

m;;eydo*e ionosphere) of fO-40 km which is compare to the transverse;scdeof aurora, 
arcs The associated Poynting flux incident on the ionosphere is found to be -2 mW/m and 

e'en sTnet transfer^ energy from «he magnetosphere to the ««*%»£%£ * 

electric field and not the braking of the plasma as was found in the onset studies. 
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Introduction 

Recently Maynard et al [1996] and Shiowaka et al. [1998] using satellite and ground 
observations have concluded that Alfven waves (Pi2's) observed during substorm onsets arise from 
brakin^ earthward convective flow. In this paper we deal with the stable arc problem rather than the 
dynamical situation that characterizes substorm onsets. This is done by joining the single ion dynamics 
of CT ions (Rothvell et al. [1994]) with the theory of oblique Alfven waves. In Appendix C we show 
how the solar wind through the cross tail electric field provides the necessary energy to maintain arc 
stability Based on this arc model we suggest that substorm onsets can arise when the equatorial 
generator is overdriven by an increase of energetic 0+ ions such as observed by Daghs andAxford 
[1996] and Daglis and Sarris [199S]. 

There have been many studies of oblique Alfven waves  in which the propagation and 
reflection of Alfven waves have been examined [Maltzev et al. \91T,Mallincrodt and Carlson 1978; 
Lysak 1985, 1986,1990; Haarende11983; Borovsky 1993; Seyler 1990, 1995; Knudsen 1996; Kan, 
1998]   A few studies have also identified a magnetospheric source. For example, the coupling of a 
compression^ wave in the equatorial region with a shear Alfven wave could produce a Field Line 
Resonance (FLR) [Chen cmdHasegawa 1974; Southwood 1974 ; Samson andRankin 1994 ; Samson 
etal 1996] In this work we investigate density striations in the near earth night side magnetosphere 
as a possible magnetospheric source of oblique Alfven waves. The basic idea is that the magnetic field 
near local midnight can become quite weak near the equatorial plane such that oxygen ions exhibit 
nonadiabatic behavior while hydrogen ions remain adiabatic. In the present model density striations 
are assumed to be produced by the phase bunching of the 0+ ions as they enter a region of an 
extended electric field gradient as shown by Rothwell et al. [1994].  Associated with the density 
striations is a periodic static spatial variation of the earthward current density which when viewed m 
the drift frame of the adiabatic hydrogen ions is seen as a tailward moving current wave. In this frame 
the current wave has a wavelength given by the distance between striations and a frequency given by 
the corresponding wavenumber times the drift velocity. This defines the frequency of the oblique 
wave in the drift frame. It also defines the wavelength of the Alfven wave along the field line through 
the dispersion relation. If one Doppler shifts the wave frequency in the moving frame to that m the 
GSM frame one finds the later to be zero consistent with the static nature of the source. The oblique 
Alfven wave forms a static wave pattern in the spirit of Maltzev et al. [1977] and Mallincrodt and 

Carlson [1978]. . 
There are two boundary conditions. One boundary condition requires j2 to be zero at the 

equatorial plane (z = 0) consistent with symmetry of the two ionospheres. The other boundary 
condition determines the reflection coefficient of the oblique Alfven waves at the two ionospheres. 
Together they fully determine the wave amplitude in terms of the striation driver and the wave phase 
at the ionosphere. By imposing a current density node at the equatorial plane and having the 
wavelength fixed we find that the parallel current density is a maximum at the ionosphere if the 
ionosphere is located a quarter wavelength from the equatorial plane. This is a well known resonant 
relation as seen in resonant cavities. 

The goal of the present work is to determine whether the proposed mechanism can lead to 
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reasonable values of the parallel current density at the ionosphere given reasonable values for the 
magnetospheric input parameters. In this paper we have used several assumptions that should be 
stated. The difference in dynamical behavior between the oxygen and hydrogen has already been 
mentioned. Also, we assume that the Alfven speed is constant along the field line and that the static 
wave structure has time to form. Finally, we do not consider wavelengths below or at the electron 
inertial length because of the evanescent property of these waves in the ionosphere [Borovsky 1993]. 
Therefore, kinetic Alfven waves as described by Goertz and Boswell [1979] are not treated here. The 
wave equation is solved analytically for a parallel field geometry. The appropriate scale factors are 
then applied to estimate the parallel currents at the ionosphere. A more precise approach is to include 
the scale factors in the wave equation which is solved numerically {Singer et al. [1981]). 

Figure 1 illustrates the concepts described above. The 0+ density striations are represented 
by a sinusoid along the equatorial plane. The waves emanate toward each ionosphere creating density 
(conductivity) perturbations. If the ionospheres are symmetrically located relative to the equatorial 
plane then the magnetospherically generated waves at each ionosphere will be at the same phase and 
the conductivity perturbations will be conjugate. 

In the coordinate system used here x points earthward, y towards the west and z is parallel 
to the earth's magnetic field. With z=0 denoting the equatorial plane, the northern ionosphere is 
located at z = Lj„ and the southern ionosphere at z = -L-B . 

0+ Density Striations 

With the above scenario in mind let us now analyze the proposed source of oblique Alfven 
waves. First, previous work {Rothwell et al. [1994]) that motivates the present effort will be briefly 
reviewed. In that paper we analytically solved the equation of motion of a particle ExB drifting 
through an electric field gradient. For an electric field gradient dE^/dx, the particle drift velocity is 

dE 
X 

v-n   M dx r*Ey (1) 

^'L1"7 B* J    B 

where M denotes particle's mass, Ey the cross tail electric field and B the magnetic field. Note from 
the denominator in (1) that Vd is highly mass selective and nonlinear, which causes the drift speed for 
heavier ions to be faster. A computer simulation was performed that took a uniform distribution of 
0+ ions outside the gradient region and followed them as they ExB drifted through the electric field 
gradient (~ lxl 0'9 V/m2). Note that the FT remained adiabatic. In the gradient region the 0+ ions were 
not uniformly distributed in gyrophase while H" remained uniform. This feature caused the formation 
of spatially periodic density striations in the GSM frame of the 0+ ions but not that of the FT ions. 
The protons adiabatically drifted through the 0+ striations. The electric field in (1) is large-scale and 
should not be confused with the electric field of the generated Alfven wave as discussed below. 

The presence of ion density striations leads to an additional x-component of the current density 
that is carried by electrons. This can be understood as follows. In regions of enhanced ion density 
charge neutrality requires that electrons flow up the field line to neutralize the additional positive 
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charge. We assume that the ions originated outside the striation region and are not gained or lost 
along the magnetic field lines. This means that their flux in the x-direction is conserved. If N^ is the 
average 0+ density and ör^. the density perturbation due to the striations we have for the perturbed 
earthward current density 

F F 

Note that in (2) electrons are the current carriers forming a spatially varying current density structure 
which maintains charge neutrality with the 0+ density striations. The 0+ density perturbation ön^,. is 
assumed to exponentially decrease from the equator with a scale length Lz and has a wavenumber in 
the x direction equal to k0. la. Rothwell et al [1994] k0 is determined by the drift speed of 0+ ions as 
they enter a region of a large scale electric field gradient. For simplicity we assume a sinusoidal 
structure for the density striations. With these assumptions (2) becomes in the GSM frame 

jx = -e 6no VxoexV(-zlL) exp( / kox) (3) 

where 6n0 is the amplitude of the 0+ number density amplitude and Vxo is the drift speed (E/B). In 
the moving frame (3) becomes 

jx = -e &n0V„exp(-z%) exp(a>/+*0xO (4) 

As the plasma convects towards the earth at a speed Vxo a current density wave is seen in the 
moving frame moving tailward at the drift velocity and with a frequency co =k0VX0. While the incipient 
untrapping of the oxygen ions (1) provides the source current for the Alfven waves, the protons 
remain adiabatic and provide the polarization current that allows the Alfven wave to propagate. 
Details are given in Appendix A. 

If we now Doppler shift the wave field derived in Appendix A to the GSM frame then (4) 
becomes a static wave structure. This should hold for any spatially periodic current driver. Therefore, 
as a general rule a drifting plasma through a spatially periodic current structure produces Alfven 
waves in the moving plasma frame such that when Doppler shifted (x' = x- Vxot, w^k^V^kjVJ to 
the GSM frame these waves will be perceived as static (compare with Haerendel [1983]). The result 
in the GSM frame is 

Ex = Exi exp i {kox -kzz)+ E^exp i (k0x + k,z)-... 
(5) 

/£,.„ exp(-z/Iz) exp/(*0x) 

where E^ and E^ denote the amplitude of the incident and reflected waves respectively and E^ is the 
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inhomogeneous component as denned in (7). Note that the third term ,on *£^°™%££ 

mT:a^th"eCndiX B) that the soiution (5) gives tise to a current density aiong the 

ambient magnetic field [Maltzev et al. 1977] which is given by 

Jz = 
V- V__  dz 

X (6) 
o    xo 

Usin« (6) E ■ and E can be related to the inhomogeneous term (the third term on the RHS of (5)) 
t ÄuatoSboundary condition. The equatorial source region couples via A^eri wavs to 
Sosphere in each hemisphere. This implies a natural asymmetry that requires Jz to be zero at the 

equatorial plane (i.e. z = 0). Using expressions in (5) and (6) we have 

£... —   _ p w 
xr~   in    k.L 

z  z (7) 2 rA W 

k u v L: V:    „    Tr N 

V +k  V L' 

where E- is the coefficient of the inhomogeneous term in the solution shown m (5) AtJar er 
listancesfrom the equator the inhomogeneous solution goes to zero and the effect of ^e density 
Ration source on the Mven wave is seen through the modification of the incident and reflected 

amplitudes as defined by (7). 

The Northern Ionosphere 

The ionosphere defines another relation between EOT and E* through the conservation of 
current at the'reflect^ surface. Here we use coordinates consistent with the northern ionosphere and cu rent at the pectin  su ^ ^ £> ^ where E 

S2^^ tXnoge^us part of (5) smce the ionosphere is well outside the stnation region. 

The result is 

£   =
S"~I>£.exp(-2f*,I,) (8) 

The symbol Ep0 denotes the background Pedersen conductivity and the «|°^^™^^ 
account the phase of the wave as it impinges on the ionosphere. The symbol Su - (u0 VJ   represents 
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the conductivity of the Alfven wave. By combining (7) and (8) one obtains a solution for the wave 
that depends on both magnetospheric and ionospheric parameters. 

E (x -) -Z- exp(/ k *) ^cc^(z-I,)]-i^sin[^(Z-I,)] 

po 

Note that the wave amplitude is very sensitive to the phase at the ionosphere which depends on the 
length of the magnetic field line. The maximum magnitude of the wave electric field at the ionosphere 
occurs when Iq L-, = ±it/2 and the minimum when kjLj is equal to an integral multiple of u. The ratio 
of the maximum to minimum wave amplitudes is S^ S0 which is usually greater than 10. 

The parallel current density carried by the wave can easily be found by using (6) and (9). 

_ S0 sin(*. (z -I,.)) +i S   cos(kz(z -Q) 

Insight can be gained by looking at the wave electric field and parallel current density at z-Lj 
(northern ionosphere). 

r,   T, SuE~exp(iÄ:ox) 

j   (*,£.) = 

F*(Q (S„o oos(KL) +i S„ sin( ktLs)) 

Fx (I,.) F (I,) [ S^ cos {K Lt) + / Su sin(*r £,)] 

where Fx and Fy are the scaling factors that arise from the convergence of the magnetic field lines. 
Singer tfal. [1981] noted that the wave equation should be solved including the spatial dependence 
of The scale factors. This requires a numerical treatment which is beyond the scope of the present 
paper. We assume that the local, equatorial nature of our wave source makes (11) a reasonable 
approximation. The parallel wave current density at the ionosphere is also dependent on the phase 
at which the wave reflects off the ionosphere. For example, if k, L= ±TC/2 then jM is proportional to 
the ionospheric conductivity. If lq L; = ±n then j^ is proportional to the Alfven conductivity along 
B0. Inspection of (11) reveals the resonant nature of the phase relation due to the ionosphere being 
much more conductive than the wave medium. The reason for this was stated above. That is, with 
the wavelength and one boundary condition fixed in the equatorial region the wave amplitude is 
sensitive to the location of the second boundary condition in analogy with a resonant cavity. The 
condition kz L;= ±n/2 is, of course, the usual quarter wavelength criterion. 

Self-Consistent Ionospheric Reflection 
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So far we have investigated the production of oblique Alfven waves by density striations in the 
equatorial plane. These waves also produce conductivity perturbations in the two ionospheres. When 
coupled to the background ionospheric electric fields these perturbations provide an additional source 
of parallel current in the manner suggested by Maltzev et al. [1977]. The parallel current density 
carried by the waves at the northern ionosphere is given by (11). When the current is away from the 
ionosphere the incoming electrons provide a source of ionization that causes a localized conductivity 
enhancement. A time-independent positive conductivity enhancement results from the balance of this 
source with the electron-ion recombination rate ar. This enhancement can modify the reflection 
properties of the wave itself. The positive conductivity perturbation produced by this effect is given 
by 

0 2p(Z,.) = -G/2Q 

G_ (Oh + l)eh (12) 

which results from a balance between recombination and ionization rates. The 'one' in the G variable 
arises from local charge neutrality in the ionosphere caused by the parallel flowing electrons stopping. 
In the upward current region we also have the ionization rate produced by j^ denoted by Qh = .5 
ion/incident electron. This value of Qh corresponds to an incident electron energy of-200 ev. The 
ionospheric integration height h equals 20 km, the recombination rate ar= lxl0'13 m3/s, 2^ = 20 S 
and the magnetic field value at the ionosphere, B; = 4xl0"5 T. This gives G = 2.5xl05 S/(A/m2). The 
z axis is parallel to B so that a positive j^ corresponds to an downward current density in the 
northern ionosphere while a positive j^ corresponds to an upward current density in the southern 
ionosphere. For the sake of simplicity we also assume (12) holds for currents into the ionosphere 
(upward moving electrons). 

ÖS (LJ =-Gjzo(Lln)   Northern Ionosphere 
(13) 

8 2 (-L.) = + Gjz<ji(-Ljs) Southern Ionosphere 

In each of the two ionospheres we have a height integrated current. 

^, = ^Exo-R^Eyo]Gjzw (14) 

where the minus corresponds to the northern ionosphere and the plus sign to the southern ionosphere. 
Here Exo is the equatorward component of the ambient ionospheric electric field and Eyo is the 
westward component. Following Maltzev et al. [1977] current continuity at the northern ionosphere 
is given by 
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Ex = [Ex"Qxp(-ikzz) +E"rexp(+ikzz)] exp(/*0x) 

El 
dx 

r\ = Gkoi [Exo -RzEyo](dimensionless) 

;;BW
a^f"j« (15) 

where koi is the striation wavenumber as scaled to the ionosphere with a scale factor Fx = .032. Rs is 
the ratio of the Hall to Pedersen conductivities. From (15) we calculate Er

n . 

S„(l+/TI)-SM 

G) V »' pO 

where again n denotes the northern ionosphere. Note that the self-consistent reflection adds an 
imaginary component to the Alfven conductivity which is equivalent to an additional phase shift in 
the reflected amplitude. We can determine when this effect becomes important by using the above 
values for equations (12) and (15). With the ionospheric electric field factor in (15) set to 4x10"2 V/m 
we find that r\ can be approximated by 104 k^;. The ionospheric wavelength at which TISU becomes 
comparable to Spo in (16) is 1.25 km which is significantly shorter than the scale size stated in our 
assumptions. 

Numerical Results 

The key numerical requirement of our model is that the distance L; between the equatorial 
plane and the ionospheres is consistent with the quarter wavelength criterion. Now the relation Iq 
=VX0 k/VA is constant along the field line since we have assumed VA is constant and the product Vxo 

k0 is independent of the scaling factor. As shown in Figure 2 we have chosen three arc sizes of 10, 
20 and 30 km in the ionosphere. These values are mapped to the equatorial plane using a mapping 
factor of .032. Having thus defined k„ we define Iqby setting the corresponding wavelength to 40 RE. 
This is consistent with the distance between the ionosphere and the equatorial plane in the auroral 
region being about 10 R^ Figure 2 shows that the quarter wavelength criterion is satisfied for a drift 
speed of some tens of kilometers per second and an Alfven speed of some a few thousand kilometers 
per second. This is consistent with observations [Huang and Frank 1986] for the drift speed and 
theoretical estimates for the Alfven speed [Lysak 1990]. 

Now let us look at the numerical viability of our model. First, we calculate the value of Ej„ as 
defined in (7) as a function of wavelength in the ionosphere for various values of the Alfven speed. 
The chosen parameter values are V^ = 20 km/s, on,, =1x104 0+ ions/m3 and Lz = 2 RE . Figure 3 
shows the results for three values of V*, lxlO6, 2.5xl06 and 5xl06 m/s. Note the peaking of the 
inhomogeneous electric field at higher Alfven speeds and at wavelengths of 10-20 km. In this model 
the wave amplitude and, hence, the strength of the magnetosphere-ionosphere interaction scales as 
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the Alfven speed. This implies more intense wave fields exist on field lines where the particle density 
has been depleted. Figure 4 shows a contour plot of the parallel wave current density at the 
ionosphere for VA= 2.5xl06 m/s. We use scaling factors of Fx = 0.032, Fy = 0.078 which corresponds 
to a dipole field model at L = 6.5. The ordinate denotes the z phase of the wave at the ionosphere in 
units of re and the abscissa denotes the striation wavelength as transformed to the ionosphere. The 
contours are in units of uA/m2. Note that we obtain a maximum parallel current density at the 
ionosphere of some tens of microamps per meter squared using an oxygen density perturbation 
amplitude of lxlO4 0+ ions/m3. The maximum current values are obtained at the quarter wavelength 
condition and for ionospheric wavelengths of tens of kilometers consistent with larger auroral forms. 
Therefore, we argue that even quite conservative values of the magnetospheric parameters are 
consistent with observed values of the parallel current density at the ionosphere. 

Now let us look at the resonant nature of the Alfven wave. Recall that the oblique Alfven 
wave amplitude is determined by the striation source as well as the magnetospheric and ionospheric 
boundary conditions in a manner equivalent to that of a resonant cavity. Figure 5 dramatically 
demonstrates this effect. This is a plot of the parallel current density for x=0 at the ionosphere as a 
function of the wave phase at the ionosphere denoted in units of re. See (11). Clearly, the quarter 
wavelength resonance can be seen. The resonance at k^ = 3TC/2 requires that VA be one third the 
value necessary for the kJLj = 7t/2 resonance for constant Vxo. Alternately the same criterion is 
satisfied if VA remains constant but V^ increases by a factor of three. Note that the parallel current 
density outside the resonance regions is not zero but differs by a factor of 2^2^ ~ 10 from the 
parallel current density at resonance. The width of the resonance is determined by SQ. Of course, any 
scattering of the wave, such as partial reflections, should significantly broadened the width of the 
resonance. 

The creation of an 10 - 40 km arc structure, such as those observed by Marklund et al. 
[1984], by oblique Alfven waves depends on the length of the field line, the plasma density along the 
field line, the x wavelength of the magnetospheric driver and the drift speed of the plasma. One 
obvious effect is that any increase in k,, would cause the resonance criterion to be satisfied on field 
lines closer to the earth. This could be related to the observed equatorial motion of auroral arcs under 
substorm growth conditions [Tanskanen et al. 1987]. 

Discussion 

We have developed here an idealized model for a magnetospheric generator of oblique Alfven 
waves. This is in contrast with the treatments of Maltzev et al [1977]; Mallincrodt and Carlson 
[1978]; andMiura and Sato [1980] that consider an ionospheric wave source. The dependence of 
the wave amplitude on both magnetospheric and ionospheric parameters have been obtained. It was 
found that parallel current density values comparable to those measured in auroral arcs can be 
obtained. Therefore, we maintain that magnetospheric wave sources play a major role in the 
formation of 10-40 km arc structures and imply a net Poynting flux from the magnetosphere to the 
ionosphere (Maynardet al. [1996]). 

We will now show that the Poynting flux values, as calculated from our model, are reasonable. 
The creation of wave energy requires a generator in the magnetospheric striation (source) region. In 
Appendix C we calculate j-E and show that such a generator exists. Using Poynting's Theorem and 

26. 



integrating over the source region we find a net Poynting flux incident on the ionosphere of 2 mW/nr, 
a value consistent with observations. The same parameter values are used in calculating this flux as 
the parallel currents shown in Fig. 4. 

The presence of an electrical generator requires the extraction of equal kinetic power from 
the oxygen ions' bulk flow. In Appendix C we show that the presence of the wave generator causes 
the ions to drift as to gain energy from the cross tail electric field Ey. In this way the kinetic energy 
of the perturbed oxygen component is replenished from the external energy source that sustains Ey. 
Moreover, the additional current due to the new drift creates an earthward jxB force that exactly 
balances the drag force, associated with the presence of the electrical generator. The details of how 
this is accomplished are shown in Appendix C. Maynard et al. [1996] and Shiowaka et al. [1998] 
have concluded from satellite measurements that substorm onsets are related to the creation of Alfven 
waves that have as their energy source the braking of earthward convection. In contrast, we have 
found that the presubstorm stable arcs are powered by a steady state transfer of solar wind energy 
via earthward convection to a magnetospheric wave generator. This transfer of energy implies that 
the generated wave energy does not degrade the striations. They are stable in this sense. We do not 
believe that the variation of VA along the field line will change the conclusions here but will add new 
features such as those described by Haerendel [1983], Seyler [1990, 1995] and Lysak [1985, 1986, 
1990]. 

Although a finite Ez exists in the GSM frame it cannot accelerate electrons parallel to Bz as 
the total electric field is perpendicular to the total magnetic field. Field aligned acceleratiort^ould 
have to arise in this model from instabilities created by the field aligned current associated with the 
wave. 

Daglis cmdAxford [1996] and Daglis andSarris [1998] have shown that the energy density 
of 17 keV to 300 keV 0+ ions increases dramatically (-a factor of 40) during the expansion phase 
of substorms. The corresponding FTenergy density increases only about a factor of 3. During the 
growth phase the ratio of 0+ to FT is estimated to be 0.1 from Fig. 1 of Daglis and Sarris [1998]. If 
one takes the H+ number density to be 0.3-1.0xl06 ions/m3 then the 0+ number density N^ is 0.3- 
l.OxlO3 ions/m3. From Fig. 7 of Rothwell et al. [1994] one finds that Ön0 ~ 0.3 N^. Any turbulence 
present Delcourt et al. [1996] could reduce 6n0 further. However, even with turbulence present we 
expect sufficient 0+ ions to sustain the stable arc structure proposed in this model. Based on these 
arguments we took a value of on,, = lxl 04 ions/m3 for the amplitude of the 0+ striation density which 
we believe is consistent with the results of Daglis andSarris [1998] for the near earth plasma sheet 
during the growth phase. This value for 6n0 also yields parallel current and Poynting flux values at 
the ionosphere consistent with observations. 

An interesting feature arises here. If the convective flow of the 0+ ions are the source of the 
Alfven wave then it follows that an increase in the 0+ ion density increases the Poynting flux to the 
ionosphere as (5n0)

2. See Eqns. ((7) and (C5)). If part of this flux heats the ionospheric oxygen and 
causes them to form conies and flow upwards towards the equatorial plane then we have a feedback 
mechanism that could play a major role in substorm onsets. Maynard et al. [1996] note that a large 
spike of Poynting flux is injected from the equatorial region towards the ionosphere at substorm 
onset. 

After onset there is less order in the background flow and less intensity in the Poynting flux 
{Maynard et al. [1996]). This could be a manifestation of the saturation of the suggested feedback 
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mechanism that depends on ordered flow. Note from Fig. 1 of Daglis and Semis [1998] that 
substorm onsets occur when the energy density of the more energetic ions (17-300 keV) in the near 
earth plasma sheet is increasing. We speculate that substorm onsets occur when the 0+ bulk flow 
energy is converted to wave energy by our mechanism at a rate such as to trigger the suggested 
feedback mechanism. For more information on Alfven waves and substorm onsets see Lui and 
Murphee [1998]. 

•At first glance it may appear that the resonances shown in Fig. 5 are unphysically too narrow 
and, therefore, difficult to realize. However, one must remember that resonances by their nature tend 
to be broadened rather than narrowed by external factors. Here we are dealing with an idealized 
model with the neglect of partial reflections along the field line and other effects that should tend to 
contribute to the broadening. Also, the width of the resonance in our model is dependent on the 
numerical value of the Alfven conductivity along the field line. If this were to be significantly higher 
then the resonance curves shown in Fig. 5 would be broader. 

The structure of the wave electric field at the ionosphere may cause vortices. From (11) the 
maximum wave electric field at the ionosphere occurs when the quarter wavelength criterion is 
satisfied. In this case the electric field lags j^ by 90° in x at the ionosphere . This means that in both 
ionospheres there is a diverging electric field (EJ where the parallel current enters the ionosphere and 
a converging electric field where the parallel current exits the ionosphere. This implies a reversal in 
the y drift velocity as either parallel current region is traversed. If our assumption of uniformity in 
the y direction is now relaxed to allow for variation in Ex along y then the ionospheric plasma will 
twist about the magnetic field at locations where Ex is large. This will cause the stable arc structure 
that is envisioned in the present model to form vortices along the y direction and is, no doubt, related 
to the stability of our arc model. Further investigation of this feature is beyond the scope of the 
present paper. 

Summary and Conclusions 

We have identified density striations formed by nonadiabatic oxygen ions as a possible 
magnetospheric source for oblique Alfven waves. It was found that magnetospheric and ionospheric 
boundary conditions lead to a resonant type behavior. Reasonable input parameter values imply 10 
uA/m2 parallel current densities and 2 mW/nr Poynting flux intensities at the ionosphere are 
attainable with the maximum values occurring for arc structures on the order of 10 - 40 km, a width 
consistent with observations of inverted-V events (Marklundet al. [1984]). Energy from the cross 
tail electric field is transferred as required to the wave generator (see Appendix C) to maintain the 
stability of the arc structure. The additional tail current in the +y (westward) direction causes a local 
stretching of the magnetic field lines in the equatorial region which correlates in our model with the 
correponding Poynting flux incident on the ionosphere and, hence, the brightness of the auroral arcs. 
It is noted that substorm onsets occur during periods of significant increases in the 0+ population 
(Daglis andAxford 1996; Daglis andSarris 1998). Such a feature would enhance the intensity of 
the Alfven waves generated by our mechanism and suggests a possible feedback connection that may 
play a role in substorm onsets. 
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APPENDIX A: 

Here we derive the equations for the Alfven wave in the plasma frame. In addition to the usual 
polarization current we also now have a time-dependent source term due to the striations. 
We assume that the 0+ striations can be approximated by a sine dependency in x and an exponential 
dependence in z. i.e. 

hJx' 
= -eV

Xo
bno'exVi(^rt'

+k0x')Qxg{ -z'lL) (Al) 

where oar = k0 Vxo is the frequency of the current source as seen in the plasma (moving) frame. The 
primed variables denote quantities in the moving frame. (Al) represents the oscillating source current 
in the moving frame that is formed by the nonadiabatic 0+ ions. These ions do not participate in the 
propagation of the Alfven wave near the equatorial plane. In this region the wave is carried by 
adiabatic (cold) protons. 

The equation for the Alfven wave is derived from (B1) below and 

dBy        .      uoP3^ 
  = U   7   = — + 11   0 7/ /       t~oJx 2 ,       r0    JX 

dzt. B2 dt 

d2Ex      i   d
2E. 

(A2) 

X 

dz'2     V2 dt'2 = -! V-oeUir Vxo 5 V eXP7' (ür'/+ koX') eXP( ~Z'IL) 

This leads to an inhomogeneous solution for Ex of the form 

Exin = Ein eXP V<*rt/ + koX^ eXP( " Z'IL-) (A3) 

where E^ is explicitly shown in (7) in the text. 
The homogeneous solution in the moving frame is 

E
xho=E

xi™P[^Urt/ + Kxf-Kz/)l+E
Xr™rti(<*rt/+koX/+kzZ^ (A4) 

where k0 and kz =VX0 k,/VA are the wavenumbers in the x and z direction respectively. The latter 
relation is equivalent to setting the frequency of the Alfven wave equal to the frequency of the source 
wave. 

The generated Alfven waves are entrained by the source wave and also move tailward with 
a phase velocity Vxo and wavenumber k0. From (A2) we find a total solution to be 
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Exi = Exi exp /' (cor t +ko x' - kz z) + E^ exp /* (cor t +ko x' + kz z) -.. 

2 

L2 + V2 

■expi(a>rt+k0x') (A5) 

in the moving frame where Eri and E^ are the amplitudes of the incident and reflected waves 
respectively. Note that the third term on the RHS of (A5) becomes negligible far from the equatorial 
plane. 

APPENDIX B: 

In this Appendix we derive expressions for Ez and j^ from Maxwell's equations. In the 
moving (plasma) frame we have 

BE,      BB, 

1?-■£ <™ 

The RHS of (Bl) can be written as - itOjBy- where cor = kgV^. The Ez component in the GSM frame 
is then given by 

i  BE, 
*-r-v-fir <B2) 

In both coordinate frames j^ is given by 

i a*,        l   5 
J'°~ *    Bx ~~ »V    Bz &3) 

where the x derivative of Byis given by ik0B   Equation (B3) is the same as equation (7) in the text. 

APPENDIX C: 

According to our model the cross tail electric field and, hence, the resulting earthward plasma 
drift is the source of the wave's Poynting flux into the ionosphere. In this appendix we first calculate 
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the electrical power per m3 extracted from the earthward drift of the 0+ ions that form the striations. 
Next, using Poynting's Theorem, we integrate over the magnetospheric source region to find the net 
wave energy flowing towards the ionosphere. Scaling this energy flux consistent with magnetic field 
line convergence gives us the wave energy incident on the ionosphere. Finally, we show that the 
tailward drag on the striation ions from the electrical generator is balanced by an earthward jxB force 
that sustains the steady state nature of the striations and, hence, stabilizes the arc structure in our 
model.. 

First, we take the real parts of Ex from (9) and jx. Note that L; denotes the location of the 
ionosphere. 

Re(Ex) = n1 (A(z)cos(kox)-B(z)sm(kox))+Einsm(kox) e ^ 

A(z) = XoX„cos(kzz) 

B(z) = -Zl smi^Qcosik^z-L^-^cosik^smiKiz-Q) (C1) 

E~ 

The earthward current density is given by the following expression. 

Re0x) = -ebno Vxocos(kox)e -zlL. 
2 dx o   xo        y  o   J (C2) 

V-oV A 

Using (Cl) in (C2) and averaging over one wavelength in x it is found that only the product of the 
first term on the RHS of (Cl) and the second term on the RHS of (C2) is nonzero. 

<Re(Ex)Re(jx)>x = -^A(z)e5noVxoe ^ (C3) 

This is a generator that represents the rate at which electrical wave energy is being created 
per unit volume. The Poynting Theorem relates the wave energy flux S(W/m2) to the electrical power. 

V-S=-jE C4 

Integrating (C3) over the source region from z=0 to z » L2 one finds an expression for S as it leaves 
the magnetospheric source region along the magnetic field lines. It is 

 2     ebn V L a     p po o    xo    z 

"   ""XT2(1 +k]Ll) (C5) m 
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where we have used the condition kJL; =TI/2. This implies kjL2 =0.3. We use the following 
magnetospheric values to calculate S ,VA = 2.5xl06 m/s, Lz = 21^, on,, = 104 0+ ions/m3, Vxo= 2xl04 

m/s and_k0 =10"5 m'1. The ratio of 2^2^ is taken as 10. With these input values we have E^ = 0.7 
mV/m, Ei„ = 2.3 mV/m and the Poynting flux S emanating from the magnetospheric source region 
towards the ionosphere is 4.7x10"* W/nr. Multiplying by a factor of 400 for the convergence of the 
magnetic field lines gives a value of ~2 mW/m2 flowing into the ionosphere which is consistent with 
values observed inside auroral arcs. 

We will now show that in the steady state the energy tapped from the striation ions to power 
the arcs is balanced by energy provided by the solar wind through the cross tail electric field. The 
wave generator acts as a constant drag force in the -x direction so that the oxygen ion's equation of 
motion (see equation (3) in Rothwell et cd. 1994) is modified as follows. 

dV(t)     co 

(C6) 
dV(t)     co 

dt        B y 

where Exo is the large scale electric field, coc is the oxygen ion's gyrofrequency, Vxo is the x 
component of the drift velocity and y is to be determined from j-E. Now we can simply transform the 
y component of the velocity 

vßy=vy«)-^-vxo (C7) 

so that the equations in (C6) reduce to those in Rothwell et al. (1994). There we found 

co„ E 
V   - y 

xo    Q2 B 
(C8) 

B    dx 

From (C7) we see that there is an additional drift in the y direction of 

Vyä = ^ (C9) 
c 
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and the kinetic power per unit volume transferred to the drifting oxygen ions is given by 

i>    = bne Ev -L Vxo =j-E =-HSSLebn F 
A-£ o        y xo    J oy o    xo 

C Ü) 

or (CIO) 

Y    _   Ein  Zpp 

where (C3) has been used. The y component of the drift Vyd can be expressed in terms of the wave 
amplitude using (C8), (C9) and (CIO). 

2   B   S„Q2 Vyd'T-S-f^ (C11> 

Recall thatEjn is the amplitude of the generated oblique Alfven wave ( See equation (7)). It can also 
be shown that (C9) implies a current jy such that the earthward force jyB balances the tailward drag 
force örioYMV^ where M is the mass of the oxygen ion. This implies a steady state such that the drift 
velocity of the striation 0+ ions in the y direction will adjust according to the power extracted by the 
wave generator. Note that only the oxygen ions forming the striations supply energy to the wave. 
Therefore, it is these ions that contribute to jy. 

33. 



Figure Captions: 

Fig. 1 Cartoon of the concepts involved. 0+ ions drifting earthward with a drift speed Vxo can create 
density striations through phase bunching. This acts a source of oblique Alfven waves that 
propagate to the two ionospheres. 

Fig. 2 .We find the magnetosphere-ionosphere system to be analogous to a resonant cavity 
with the resonance occurring at the quarter wavelength criterion. The quantity Xxe denotes 
the arc size A/2 at the ionosphere as mapped to the equatorial plane. The symbol Xz denotes 
the wavelength along the magnetic field. This figure shows the required relation between the 
Alfven and drift speeds for the quarter wavelength to be equal to the distance between the 
ionosphere and the equatorial plane in the auroral region. 

Fig. 3 The wave electric field amplitude E^ as defined in (7). This is the driver electric field that 
defines the amplitude of the Alfven waves. 

Fig. 4 A contour plot of the parallel current density carried by the oblique Alfven wave as 
seen at the ionosphere. The abscissa denotes the equatorial source wavelength as mapped to 
the ionosphere. Note the maximum values occur at the quarter wavelength criterion and for 
10-40 km wavelengths. '3l 

Fig 5 The resonant nature of the magnetosphere-ionosphere coupling by the oblique Alfven wave 
is demonstrated as a function of kl^ where L; is the distance between the ionosphere and the 
equatorial plane. The resonance occurs when the distance between the ionosphere and the 
equatorial plane satisfies the quarter wavelength criterion as shown in Figure 2. It arises from 
the ionospheric conductivity being much larger than the Alfven (wave) conductivity. It is 
expected that other effects, such as partial wave reflections, would broaden the resonance 
curves and extend the parameter space over which arc structure exists. 
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Pitch angle scattering of diffuse auroral electrons 
by whistler mode waves 

Elena Villalon 
Center for Electromagnetics Research, Northeastern University, Boston, Massachusetts 

William J. Burke 
Space Science Division, Phillips Laboratory, Hanscom Air Force Base, Massachusetts 

Abstract-   Resonant electron-whistler interactions in the plasma sheet are 
investigated as possible explanations of the nearly isotropic fluxes of low-energy 
electrons observed above the diffuse aurora.  Whistler mode waves, propagating 
near the resonance cone with frequencies near or larger than half the equatorial 
electron cyclotron frequency, can interact with low-energy plasma sheet electrons. A 
Hamiltonian formulation is developed for test particles interacting with the coherent 
chorus emission spectra. We consider the second-order resonance condition which 
requires that inhomogeneities in the Earth's magnetic field be compensated by a   ■ 
finite bandwidth of wave frequencies to maintain resonance for extended distances 
along field lines. These second-order interactions are very efficient in scattering the 
electrons toward the atmospheric loss cone. Numerical calculations are presented 
for the magnetic shell L = 5.5 for wave amplitudes of ~ 10~6 V/m, using different 
frequency and magnetospheric conditions. 

1.   Introduction 

The pitch angle scattering of energetic electrons by 
whistler waves in the the Earth's radiation belts is a 
long-standing research problem [Lyons and Williams, 
1984, and references therein]. Whistler waves are re- 
sponsible for the precipitation of electrons in both the 
plasmasphere and the plasma sheet [Bell, 1984]. As 
electrons scatter toward smaller pitch angles, they give 
up small quantities of energy, amplifying the waves to 
the point where the interaction becomes self-sustaining. 
The limit for stably trapped particle fluxes was first 
investigated by Kennel and Petschek [1966], and later 
in self-consistent quasi-linear diffusion models by Be- 
s-palov and Trakhtengerts [1986], Villalon et al. [1989], 
and Villalon and Burke [1991]. 

Past studies have considered whistler waves for which 
the ratio between the wave and the electron cyclotron 
frequencies is u/Qe < 1. In this case, only electrons 
whose energies are larger than or of the order of the 
magnetic energy per particle Ec, may interact with the 
waves. Normalized to the electron rest energy, Ec — 
(Sljup)2. Here, Sle and u? are the electron cyclotron 
and the plasma frequencies, respectively. As pointed 
out by Johnstone et al. [1993], in the outer plasma 
sheet the threshold energy for resonant interactions is 
estimated to be > 10 keV. In this paper we investigate 
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the possibility of resonant interactions of whistler mode 
waves with electrons with energies well below 10 keV. 
For these interactions to take place, the wave frequency 

must be close to fie. 
The diffuse aurora is formed by nearly isotropic fluxes 

of electrons, mostly with energies of <10 keV, that pre- 
cipitate from the plasma sheet [Johnstone, 1983; Inan 
et al., 1992]. A number of studies have attempted 
to explain the diffuse aurora by the interaction of the 
electrons with electrostatic electron cyclotron harmonic 
(ECH) waves [Swift, 1981]. However, it does not appear 
that the amplitudes of ECH waves are large enough to 
account for the electron precipitation [Belmont et al., 
1983; Roeder and Koons, 1989]. Johnstone et al. [1993] 
proposed that the < 10 keV electrons that form the dif- 
fuse aurora may be precipitated by whistler mode waves 
that propagate along the magnetic field with frequen- 
cies such that w — ße. They sucessfully explained how 
the resonant energy of the electrons could be well below 

E 
We note that Figure 3 of Burke et al. [1995] gives 

an example of waves in this frequency band, observed 
by the CRRES satellite while it passed through the in- 
ner plasma sheet during a period of magnetic quiet- 
ing. Near apogee, where CRRES encountered nearly 
isotropic plasma sheet electrons, it also measured waves 
covering the band between 0.50, and fie. Our experi- 
ence is that these frequencies are detected by the CR- 
RES plasma wave experiment only in the presence of 
central plasma sheet electrons. In the case shown by 
Burke et al. [1995], electric field amplitudes of ~ 10" 
V m-1 appear in the frequency band of interest.  Dur- 
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ing disturbed times the intensities of these waves may 
be several orders of magnitude stronger than in the case 
presented. Here we wish to demonstrate that even the 
low amplitudes are suffient to explain diffuse auroral 
electron precipitation. 

Inan et al. [1992] and Inan and Bell [1991] have 
studied interactions between low-energy electrons and 
obliquely propagating chorus emissions. They consider 
first-order resonant interactions with upper band cho- 
rus, where the wave frequencies are > 0.5fie. The wave 
magnetic field amplitudes for chorus were reported to 
be in the range of 1-100 pT. Inan et al. [1992] used 
wave magnetic amplitudes of 1 pT in their calculations. 
If these waves propagate near the resonance cone, they 
become quasi-electrostatic. In this way they can even 
interact with suprathermal electrons [Jasna et al., 1992] 
and efficiently precipitate low-energy electrons into the 
atmosphere, leading to the morningside diffuse aurora. 

Chorus and triggered emissions are characterized by 
coherent wave spectra. Triggered emissions are artifi- 
cially stimulated inside the plasmasphere by ground- 
based transmitters [Buriis and Helliwell, 1976; Helli- 
well, 1993]. VLF chorus is frequently associated with 
microbursts of electron precipitation [Rosenberg et al., 
1981; Parks, 1978]. It is believed that chorus is gen- 
erated through a cyclotron instability which is pro- 
duced by anisotropic warm electrons in the equatorial 
plasma sheet [Hashimoto and Kimura, 1981; Ohmi and 
Hayakawa, 1986]. The nonlinear interactions produce 
impulsive precipitation of the electrons [Hardy et al., 
1990] due to the filling of the loss cone as described by 
Davidson and Chin [1987]. The nonlinear interactions 
between energetic electrons and the waves also produce 
almost monochromatic wavelets, which generate chorus 
elements in a manner similar to that of artificially stim- 
ulated emissions [Sazhin and Hayakawa, 1992]. Because 
of the phase coherence of these emissions, the electrons 
may stay in gyroresonance for long distances along the 
field lines, leading to second-order resonant interactions 
[Dysthe, 1971; Nunn, 1974]. 

Here we consider waves with 0.45 < w/ne < 1 
that propagate obliquely to the background geomag- 
netic field. These waves may be generated by the linear 
cyclotron instability of warm electrons interacting with 
the waves as described by Kennel and Petschek [1966] 
and Johnstone [1983]. For linear interactions the dif- 
fusion of the electrons into the loss cone is weak, and 
the precipitation does not occur in an impulsive way 
as in the microbursts [Davidson, 1986a and 1986b]. If 
wave amplitudes grow to some critical levels, nonlin- 
ear effects allow for second-order interactions to take 
place. Second-order interactions require that the wave 
amplitudes be large and have a finite frequency spectral 
spread to compensate for the magnetic field inhomo- 
geneities [Villalön and Burke, 1993]. Second-order in- 
teractions are defined in terms of the variation of the rel- 
ative phase angle between the waves and the electrons, 
which leads to a specific change of the wave frequency 
along the field line, as given in section 5. In contrast 
with the work by Inan et al. [1992], we consider second- 
order interactions for a broad spectrum of VLF chorus. 

The wave amplitudes required for efficient electron pre- 
cipitation are smaller with the second—order resonant 
interactions than those used by Inan et al. [1992]. We 
assume electric field amplitudes of« 10~6 V m-1. For 
a refractive index 77 < 30 this corresponds to wave mag- 
netic field amplitudes of < 0.1 pT. 

The paper is organized as follows. Section 2 presents 
the basic equations that describe whistler mode waves 
propagating in a cold magnetized plasma. Section 3 
considers electron-whistler resonant interactions in the 
Earth's inhomogeneous magnetic field. We establish a 
mapping between the location of the interactions along 
the field line and the equatorial pitch angles of elec- 
trons resonant at the first cyclotron harmonic. Section 
4 contains the basic equations of a test particle Hamil- 
tonian theory. In section 5 we integrate these equations 
along magnetic field lines. Conditions for second-order 
resonances are also given. Section 6 contains numeri- 
cal applications for plasma sheet electrons. We consider 
second-order resonant interactions of test particles with 
multiple-frequency waves. The changes in pitch an- 
gle and energy are calculated. For wave amplitudes of 
~ 10~6 V m-1, we show that the changes in pitch angle 
may be > 1° for electrons near the edge of the loss cone. 

2.   Whistler Mode Waves 

Figure 1 represents the geometry of wave-particle in- 
teractions with a whistler mode wave of frequency CJ 

and wave vector k, propagating in a field-aligned duct. 
The geomagnetic field B0 is along the z direction, and d> 
is the angle between k and Bo- For waves propagating 
near the resonance cone, cos^ ~ w/ne, the refractive 
indices are very large, and the waves become quasi- 
electrostatic [Sazhin, 1993]. In terms of X = (wp/w)2, 
the refractive index 77 = ck/u satisfies the dispersion 

relation 

I 

Figure 1. Schematic representation of a whistler mode 
wave of frequency (w, k), interacting with electrons and 
protons. The Earth's dipole magnetic field is B0, the 
geomagnetic latitude is A, and s is the coordinate along 
the flux tube. 
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'' ■ ' + f 

ne 

(i) 

8    —    —| cos <£| — 1 

Near the equator, the angle 0 is such that cos 0r < 
cos0 < 1. The resonance cone angle, 0r, is denned as 

cos0r = 
n«(i) 

(2) 

We use the argument (£) to denote equatorial values 
of physical quantities. If we call 8(L) the value of 8 at 
the magnetic equator, we show that when 0 — 0r, then 
8{L) = 0. 

The group velocity in the parallel direction can read- 
ily be obtained from (1) considering v?i|| = du/dk\\. 
Normalizing vg't\\ to c-1, we find that 

V9,\\      ~       — *(5> ^) 
^11 

t(6,4>)    =    1+cos2 0(1-——) 
0 +  { 

(3) 

where r?|| = 77 cos 0. Note that as 8 —► 0, t(8, 0) —♦ sin' 0. 
The electric field, E, of the wave is represented by 

E = x £ 1 cos * - y £2 sin * - z £3 cos ^       (4) 

where x, y, and z are unit vectors, 'f = ij. E + ^l| z-wi. 
and jfc||, Ax are the components of the wave vector along 
and perpendicular to Bo- The ratios of the electric field 
components are 

£2 

£1 

£l 
£3 

V2    (S?)- I cos 0| 

1 — Jf — (77 sin 0)2 

T72 sin0 cos0 

(5) 

For the case of waves propagating near the resonance 
cone, w — ne(i)|cos0|, the equatorial refractive index 
V2{L) 2> 1- Its electric field is linearly polarized, having 
components l^/^il "C 1 and |fi/^3| (sin 0/cos0). 
In this case the wave becomes quasi-electrostatic, since 
E is almost in the direction of k, and the group veloci- 
ties vg ~ f7-1 are very small. 

Near the equator, we approximate the Earth's dipole 
magnetic field as having a parabolic profile   ■ 

h = 
n 

n(L) 1 + (6) 

where z ~ RgLA, RE is the Earth's radius, L is the 
magnetic shell parameter, A is the geomagnetic lati- 
tude, and rL = {21/2/2)RBL. The equatorial gyrofre- 
quency is ft(£), and Q represents the gyrofrequencies of 
either electrons or protons at locations s away from the 
equator along the field line.   Equation (6) is obtained 
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from a Taylor expansion of the dipole field and is an ex- 
cellent representation of the magnetic geometry within 
±20° of the equator. 

3.   Resonant Electron-Whistler 
Interactions 

Here we consider relativistic electrons and normal- 
ize their energies to (mec

2)-1, their velocities to c_1, 
and their momenta p to (mec)~l. In what follows we 
only refer to these normalized quantities. The relativis- 
tic factor is fR = [l - tr]-1/2, where v is the particle 
velocity. Resonant whistler-electron interactions must 
satisfy the condition 

1 -77||V|| - t =0 
w   -fR 

(7) 

where I = 0,±1,±2,... is the harmonic number, and 
Qe = \q\B0/mec is the electron gyrofrequency. Here, 
V|| and 77|| = 77 cos 0 are the parallel components of the 
particle's velocity and refractive index, respectively. 

In terms of the local pitch angle, VJJ = v cos 9. Here, 9 
is the angle between Bo and v. We call p = sin2 9(L), 
where 9{L) is the equatorial pitch angle. Here, 9(L) > 
9C, where 9C is the pitch angle at the edge of the loss 
cone, and pe is the corresponding value of p. In ad- 
dition, we require that 9{L) < 9M; thus the range 
of resonant equatorial pitch angles is pe < p < PM. 
The upper limit 9M depends on the extent of the res- 
onant region along the field line, as we shall explain 
below. As a function of L shell, the mirror ratio is 
a = p;1 = Lz (4 - 3/X)1/2. To zero order in the elec- 
tric field amplitudes, a particle's magnetic moment is 
conserved. Then we may write for the parallel and 
perpendicular  components of the particle  velo'city v, 
v,| = *[i - pCi/niL)]1'2, vL = v[pn/n(L)}"2. 

As the particles move away from the equator, their 
parallel velocities i/|| decrease. We assume, however, 
that the waves' phase velocities w/i|| remain constant. 
That is, variations in £7e, w, and cos 0 are such that 
77|| is constant along the near-equatorial parts of field 
lines. Given a resonant energy for the I the harmonic, 
jR = (1 + p2)3, interactions take place at geomagnetic 
latitudes such that 1 < h < KM, where h is defined in 
(6). For h = 1 we take 9{L) = 9M, and for h = hM then 
9{L) = 9C. Thus there exists a mapping between h and 
p, which may be obtained by solving for the resonance 
condition in (7). 

In terms of the resonant parallel momentum p/y, 
where p^ = pt [l - p n/fi(L)]1/2, (7) becomes 

Pi\\   = 
l_ 

1\\ 

tne + \fi+v\ (8) 

The equatorial parallel velocity is obtained from v£,, — 

PJHU+P?«)-
1
- 

To find the resonant energy, we consider interactions 
that take place at the equator h = 1, such that the 
resonant pitch angle is 9(L) = 9M- Next we define 
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Ao 

Do 

TJjj cos' 8M - 1 

2 —li—i Tjii cos 6M (9) 

We introduce the normalized time r = tu..(L) and 
length * = »/I*, and define the canonical momenta 

and action: 

C0    = 

Then we show 

Pi = ~ 
Do_ 
2A0 

- 1 

l2A</   ~ A„ 

Pr 

i/: 

=    p|| + £3 sin * 

=    px - £i sin * 

=      py - C2  C°S *   ~ 

(15) 

ne(5)x 

(10) 

which solves for the electron momentum. The plus sign 
must be taken for / > 0, and the minus sign for I < 0. 
Note that for I > 0, cos*(I) < 0, and for I < 0 then 
cos*(L) > 0, so that in all cases D0 < 0. Also note that 
as cos i -* cos *,, S(L) - 0, T,„ -CO, and pi - O^nd 
thus the energy of the resonant electron* very small 
(i.e., < 1 keV). When the frequency of the waves u, -> 
fle(i). then costfr - 1, and again we have 6{L) - 0, 

Va~dnfolPwralso consider interactions that; occur 
at h = hM and for pitch angles at the edge of the loss 
cone 0^ = Be. From (8) we obtain the following rela- 
tion between ;* and L as a function of the resonant 

energy 7ä and 9e: 

_    l£Bfpi
3 + (P, + ^l£)2     (lfi) 

-   2 n(5) l' c     J 

and call 

7o=[l + P,f + 2in(i11 
n(i)J 

(17) 

The relative phase angle between the wave and the elec-. 

tron is 

A    =    arctan^ £ J 

(18) 

To first order in wave electric field amphtudes, the 
,         n j-   [    1 + /L7»-,1       (11)    time-dependent Hamiltonian is [Ginei and Seemann, 

y/TZJM-=Jl-*chM   [_hM+fltlR\      V    >    1990. Albert, 1993; VMM* and Birke, 1993] 

where we define /* = */«>e(I). The waves exist near 
the equator, and their extent along the field hues is 
such Lt h< hM, where It is defined in (6). Because 
interactions take place near equatorial regions, hU is 
do to one. The upper limit on theresonant; equatorial 
pitch angles 6M is obtained from (11) and depends on 
the extent of the interaction region as given by hM 

Solving (7) for hi as a function of /x, we show that for 

+oo P    T 
7i = 7o_£.   £   ^(I.Pn.^sin^ 

where P = (7S " 1)1/3. ^d 

(19) 

T< = *3 f AW 2PV2In(i) 

fct   =   b, + [t? + (/imiP)2 -TÄ/ilX/3 

b<   =   7äh - iUt> ^nP)
2 

(12) 

where mpfL = ("1 +.w/*) U " w)"1"-   ^ *" 
Landau resonance (£ = 0), 

• [(ei + ea) Ji-i(«) + (£i - c'-) Ji+l(a)] (20) 

where the J values are Bessel functions of argument 
a = i^ and p = (c/n.) [21 ?/n(I)]>" is the Larmor 
radius. A constant of motion is 

(21) c'=m.-[m\- 

(l||*)2J 

For a given value of the electron energy 7«, (11) to (13) 
establish a one- to- one correspondence between the 
resonant equatorial pitch angles 6{L) and the geomag- 
netic latitudes A at which the interactions are taking 

place. 

4.   Hamiltonian Theory 

The dimensionless electric field amphtudes are 

IA (14) 
£i = mecu> 

Next we solve for the equations of motion for a single 
isolated resonance. To «ro order in the electric fields 
di/dr = K P„/7o, where K = c/rML) <. 1. For 
«ample, at I = 5wc show that K = 4.5 x 10 «. D* 
ferentiating (18) with respect to 5, the length along the 
Sine, to «Jo order in the electric field amphtudes, 

we show 
<&=rLh + «b^ (22) 

For resonant electrons, dii/ds = 0 Then the equations 
of motion for the canonical variables reduce to those of 
the physical variables at the resonance. Referring to the 
physical action and parallel momentum, in term of the 
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length 5 along th   field line, we find that to first order 
in the electric fields, h{R)-      2       l-nht 

(31) 

dl_ 

ds 

ds 

LJL 
K
 pii 

^(/,P||,S) cos& 

KTikn   dl i   dn 
£      ds       p|| Ü{L) ds 

(23) 

(24) 

The evolution of the electron resonant energy IR, and 
the equatorial pitch angle (j. — sin  6^, is 

where hi is given in (12) and (13). 
At the resonance we also obtain st - (ht - l)1'2. 

Using a Taylor expansion around s = si, we obtain for 
the phase angle [Villalön and Burke, 1993] 

il = UR)+zl1)('-»i) + \tit)(>-'i)3    (32) 

diR 

ds 

dfj. 

ds 

«1, 

 til 

'i) eis 

7^-1 

m. 
-7RP- 

(25) 

^        (26) 
ds 

Here, ^ = 0, and 

Differentiating (22) with respect to s and assuming 
that dii/ds — 0 yields 

fie 
ds2 = at 

1 dl 

£ ds 
(27) 

Here, 

ai    =    rx, 
t£fcii 7JJ c2u) fR k-l 

2£ 
7K 

/cp||Oe(I)  ds    '   «pji   Y 1 - ßk 

(28) \/l - M ~ A(i,t))^ 

A   =   —(7,1-1) 
ne(i) 

(29) 

where A(L,v) = i?|| «w/fie(X); all other variable are 
defined throughout the paper. For second-order reso- 
nant electrons the inhomogeneity of the magnetic field 
is compensated by the frequency variation, and then 
o.L = 0. In addition, if ij|| = 1, then ßt = 0; this is 
the case of infinite acceleration studied by Roberts and 
Buchsbaum [1964]. 

Combining equations (24) and (25), we obtain 

d-YR 

ds 

1_ 

^11 

dpjl        I_     1     dO 

ds   + p|| 0(1) ds 
= 0 (30) 

The diffusion curves, or single-wave characteristics, are 
obtained by integrating (30) along s. These are the 
curves along which the representative point of a particle 
in the py, p± plane will move. If we neglect magnetic in- 
homogeneities, we obtain the diffusion curves for homo- 
geneous, relativistic plasmas [1 + pjj + PJJ

1/2
 ~ Pw/^W - 

const. 

5.   Equations of Motion Near 
Resonance 

At the resonance the parallel component of the mo- 
mentum, Pi\\{R), is given by solving for (8). The phys- 
ical action is obtained from 

*<2'=a*(Ä} + Ä(Ä) 
1 dl] 
£ ds\ 

(33) 
(*) 

where the subscript  (£) denotes values taken at the 
resonance, for Ii = I(R) and py = pi\\. 

We define the length of resonant interaction as 

6si 

(34) 

Near resonance the change in action, energy, and 

pitch angle is given by 

AI   = 

ATR    = 

AM    = 

dl 
ds 

6si 
(-R) 

ttle(L) 
AI 

£üc 

Here, 

dl 

ds 

7^-1 L 

I   P 

ij) 
-1RP 

(35) 

(36) 

AIR       (37) 

= tJL Tt[lt{R)tm(R),s\ (38) 
(A)       

K «II 

where Tf is defined in (20) for the resonant values of I 
and py. 

If the electric field amplitudes are small compared 
to the inhomogeneity of the plasma, then we may ap- 

proximate ^2) ~ at{R). For this case the changes in 
action, energy, and pitch angle are proportional to Ci, 
the electric field amplitudes. In contrast, for second- 
order resonances, ßt [{l/l) {dI/ds)]{R) » at, and then 

(j2) ~ ßt(R) [{!/£) {dI/ds}}(R).   For second-order in- 

teractions the changes in action, energy and pitch angle 

are proportional to ci    . 
Second-order resonances require that the inhomo- 

geneity of the magnetic field be compensated by wave 
frequency variations along the field line [Dysihe, 1971; 
Nunn, 1974]. By considering (27) and (28), we require 
that for second-order interactions, a/ —* 0, which leads 
to the frequency variation along the field line as 
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h-1 

1-fih 7R 
s/l- ph - A(I,V)M 

(39) 

where A(I,v) is defined after (29), and we have taken 

d^/ds = 0. 

6.   Numerical Calculations 

6.1.   Resonance Condition 

In this section we present some applications of the 
test particle theory to plasma sheet electrons in the ge- 
omagnetic shell L = 5.5. The dipole magnetic field at 
the equator is B(L) = B0L~\ where B„ = 3.1 x 10 nT, 
and the equatorial electron gyrofrequency is ne(I) - 
0.33 x 105 s"1. We take two values for the ratio between 
the electron plasma and the equatorial cyclotron fre- 

quencies, *p/ne(L) = 3 and 1.5. The width of the res- 
onant cone is 9C = 3.25°. Calculations were conducted 
for the four frequencies u/Qe{L) = 0.45,0.55,0.75, and 
0.85. We assume that the waves have a coherent spec- 
trum of finite frequency bandwidth, as occurs in the 
chorus and triggered emissions [Selliwell, 1967]. 

Figure 2 plots the energies of resonant electrons in 
keV versus cos <j>, where <j> is the angle between the wave 
vector and the geomagnetic field. We take four val- 
ues for w/ne{L) as indicated in Figures 2A - 2D, and 
w /ft (I) = 3. The maximum geomagnetic latitude is 
5°P, which corresponds to hM = 1-035. The electron 
energies represent solutions for the resonance condition 
as given in (10). The value for BM is obtained from 
C0SÖM = (1 - ßchMyr- (i + fL) (-hM + h)-1- For 
the frequencies w/n,(L) = 0.45 and 0.55, we consider 
the two harmonics £ = 0 and 1; for the frequencies 
w/ft£(I) = 0.75 and 0.85, we represent only the first 
harmonic, 1=1. We see that for w/ne(X) < 0.5, 
the Landau resonance £ = 0 interacts with lower- 
energy particles than the first harmonic £ = 1. For 
w/n«.(I) > 0.5 the first harmonic reaches lower-energy 
electrons than the Landau resonance.   However, as we 
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Figure 3. Electron energy in keV versus cos^, us 
ing the ratio w,/ne(I) = 1-5. The frequency ratio. 
JQAL) is equal to (A) 0.45, (B) 0.55, (C) 0.75, anc 
(D) 0 85 Figures 3A and 3B describe the cyclotror 
harmonics I = 0 and 1, as indicated next to the curves 
Figures 3C and 3D use only the first harmonic 1-1. 

show below, only the first harmonic couples efficienth 
with low energy electrons. We also observe that ib: 
waves to interact with electrons of energy of < 1 keV 
their angles of propagation <j> must get closer to the res 
onance angle <j>T. Also, if « - Sl.[L), then the electror 
energy decreases below 1 keV. 

Figure 3 shows similar calculations considering tha 
w /ne(I) = 1-5- Other parameters do not change. W 
observe that for all the panels the electron energy i 
much larger than in the case shown in Figure 2. This ■ 
because as up/nt(L) decreases, r, also does as given u 
(1) which leads to larger values of the electron energies 

Next let us consider (11). Given 6M, we solve C11 

for hM as a function of the electron energy 7H and th 
loss cone angle Mc = «n2 Be. For the £ = 1 "harmonic w 

obtain 

hM     —     aM   + *M 

aM =    h  ~ 2(i-MM: 

P . t/*-1)3 
h
 +    l-MM 

(h 

1/2 

(4C 

Figure 2. Electron energy in keV versus cos<£, using 
the ratio uJQJL) = 3. The frequency ratios u/Cle{L) 
is equal to'(A) 0.45, (B) 0.55, (C) 0.75, and (D) 0.85. 
Figures 2A and 2B describe the cyclotron harmonics 
£ = 0 and 1, as indicated next to the curves. Figures 
2C and 2D use only the first harmonic £ = 1. 

where fL = fL 7K and fL = w/Clt{L). This is the San- 
as (12), but now fi = fic- Equation (40) defines tr 
range of geomagnetic latitudes at which the electron 
whistler interactions take place, 1 < h < hM, as a fun 
tion of the resonant equatorial pitch angles whose e> 

tension is ßc < P < MM- Note that as fL — 1, the 
hM _ fL Thus, as the wave frequency approaches if 
the electrons and waves interact very near the equate 

for all values of UM ■ 
Figure 4 shows the geomagnetic latitude A versus re 

onant equatorial pitch angles BM. The latitudes are o 
tained by solving (40) and taking A = (9/2)1'- (hu 
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1(T 

< 

6   - 

2   - 

Ou 

3.25 
0(L) 

Figure 4. Geomagnetic latitudes A versus equatorial 
pitch angles 8{L) in degrees. The four curves corre- 
spond to the indicated frequency ratios w/Qc(L).    . 

I)1'2. Because the electron energies are small, we as- 
sume that 7R = 1. We present the four cases w/fle(£) 
= 0.45, 0.55, 0.75, and 0.85. As w -* Oe(L), the inter- 
actions get closer to the equator, and KM —► 1. Figure 
4 also shows that for interactions occuring within 1° 
of the magnetic equator, the range in equatorial pitch 
angles starting at the loss cone angle is ~ 3°. Then 
As = (hM - 1)1/2 = 0.037, and the frequency variation 
as obtained from (39) is small. Note that as h —► 1, 
du/ds —> 0. 

6.2.   Hamiltonian Equations 

We now present numerical calculations based on sec- 
tions 4 and 5 for the geomagnetic shell L — 5.5. Con- 
sider the case up/Qe(L) = 3, which gives lower resonant- 
energy results than if uP/üe(L) = 1.5. We again use the 
four frequencies w/fle(I) = 0.45, 0.55, 0.75, and 0.85. A 
wave amplitude of 10-6 V m-1 applies to all examples. 

Figure 5 represents the change in equatorial pitch an- 
gle A#z, versus the pitch angle in degrees for second- 
order interactions. The change in pitch angle is ob- 
tained by combining (34) through (38), where in (-37) 
Aß = sin(20£,) A0£. We assume that the wave fre- 
quency changes along the field line according to (39). 
Figures 5A-5D correspond to the four frequency ratios. 
In each panel we represent three values for cos<^> as in- 
dicated. 

Figure 5A, shows the frequency ratio w/Qt(L) = 0.45 
for the three propagation angles cos <j> = 0.46, 0.5, and 
0.999; the corresponding energies of the resonant elec- 
trons are 1, 5, and 11 keV. Figure 5B represents the 
frequency ratio w/Qe(L) = 0.55 at three propagation 
angles cos <p = 0.56, 0.6, and 0.999; the corresponding 
resonant energies are 0.4, 1.75, and 5.5 keV. Figure 5C 
represents the frequency ratio w/Qe(L) = 0.75 at three 
propagation angles cos<£ = 0.78, 0.88, and 0.999; the 
corresponding resonant energies are 140, 470, and 700 
eV. Figure 5D represents the frequency ratio u/üt(L) = 
0.85 at three propagation angles cos <f> = 0.86, 0.88, 
and 0.999; the corresponding resonant energies are 13, 

36, and 135 eV. The extensions of the resonant regions 
along the field line are A = 6.3°, 5.7°, 4.3°, and 3.3° in 
Figures 5A, 5B, 5C, and 5D, respectively. 

Second-order interactions require frequency varia- 
tions along the field line given by (39). Thus, for very 
monochromatic waves the resonance region may extend 
< 1° from the magnetic equator. As a matter of fact, 
if waves are to interact with electrons whose resonant 
pitch angles are such that 9C(= 3.25°) < 6L < 6.5°,. 
then the interaction region along the field line extends 
for 1.4°, 1.25°, 1.0°, and 0.75°, corresponding to the 
frequency ratios u/Cle(L) = 0.45,0.55,0.75, and 0.85, 
respectively. 

Calculations have also been conducted for wp/fie(L) = 
1.5. The changes in pitch angles for all cases are about 
30% less efficient than those presented in Figure 5. We 
have also made calculations for the Landau resonance 
£ = 0, assuming that near the equator drj^/ds = 0 to 
obtain from (28) 

a-o = 
1- t±h 

A(L, v) fi (41) 

The magnetic inhomogeneity is uncompensated by fre- 
quency variations. In addition, because I = 0, Aß = 
-27ß(7ß - l)'1 ßA-fR. Near the loss cone, ß ~ ßc, and 
A^ is small. 

Figure 6 shows the normalized changes in energy as 
A7ü(7ß— 1)_1 versus resonant equatorial pitch angles. 
Figures 6A, 6B, 6C, and 6D correspond to the four dif- 
ferent frequency ratios indicated. Each panel of Figure 
6 shows same three propagation angles as in Figure 5. 

The corresponding energies for each panel and for each 
propagation angle are defined in Figure 5. The changes 
in energy are obtained as in (36), by assuming that the 
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Figure 5. Change in pitch angle A9[L) versus 8{L) 
due to second-order resonant interactions at the first 
cyclotron harmonic, with wp/fie(L) = 3. The frequency 
ratios u/ile{L) is equal to (A) 0.45, (B) 0.55, (C) 0.75, 
and (D) 0.85. Numbers next to the curves correspond 
to values of cos$. The resonant energies as functions of 
cos0 and the frequency ratio are discussed in the text. 
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Figure 6. Normalized change in the electron resonant 
energy Am (JR - l)-1 versus 9{L) for second-order 
resonant interactions at the first cyclotron harmonic, 
with wp/ne(I) = 3. The ratio w/fie(I) is equal to (A) 
0.45, (B) 0.55, (C) 0.75, and (D) 0.85. Numbers next 
to the curves refer to different values of cos <p. Resonant 
energies are given in the text. 

second-order resonance condition is satisfied and that 
the frequency variation along the field line is as given 
in (39). Note that as u> —» Cle(L), larger changes in 
energies are calculated than for smaller values of the 
ratio u/£lc(L). For example, for u>/ne(£) = 0.45 and 
&7R (lR — I)-1 = 10~3, there is an energy change of 
1 eV for every 1 keV of the electron's initial energy. If 
w/ne(£) = 0.85 and A7.R (7ä - I)"1 = 16. x 10~3, we 
obtain a change of 16 eV for every 1 keV. 

The electrons mantain resonance with the waves over 
a certain time interval, At, over which the phase change 
of the resonant electron with respect to the wave re- 
mains less than, say, x/2. By integrating (27) twice for 
second-order resonant electrons we obtain, 

At = -  |7* - -^-L\  —   .     A 
w u TTjj — 1     &7R     P 

- -' h     («) 

© 
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- —"        ^76 - 

.02 - __Z8_ 
.88 

1 n 1 1        1 1 

3.5° 6.5° 

O(L) 

Figure 7. Change in pitch angles Aß(L) versus equa- 
torial pitch angles 8(L) due to first-order interactions at 
the first cyclotron harmonic. We use <j/Qt(L) = 0.75. 
Numbers next to the curves refer to values of cos <j>. 
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The time duration as obtained from (42) is consistent 
with resonance lengths that correspond to 1° to 3° lat- 
itude from the equator. 

Figure 7 shows the change in pitch angle versus ini- 
tial pitch angle for first-order resonant electrons. The 
wave frequency remains constant along the field line. 
Thus ae is finite but at the equator where h = 1, 
aL = 0. The changes in pitch angle and energy are 
linear with the electric field amplitudes. We take the 
example w/f2e(I) = 0.75. The three angles of propaga- 
tion are cos <f> = 0.76, 0.78,0.88, and the corresponding 
resonant energies are 165 eV, 466 eV and 1.5 keV, re- 
spectively. The wave amplitude is 10~6 V m-1. We 
see that first-order resonant interactions do not give 
electron scattering as strong as when second-order res- 
onance conditions prevail. 

7.   Summary and Conclusions 

We have presented a test particle theory for the in- 
teractions of whistler mode waves with < 10-keV elec- 
trons near the equatorial plasma sheet. A Hamiltonian 
formulation has been developed for interactions with a 
coherent spectrum of multiple—frequency waves such as 
those found in the natural chorus emissions. The main 
results are as follows: 

1. Efficient whistler-electron interactions require that 
the ratios between the wave and the equatorial elec- 
tron frequencies be such that u/Üe(L) > 0.5. For 
waves propagating near the resonance cone and for 
w —► ne(£), resonant energies are < 1 keV. 

2. We establish a mapping between the resonant, 
equatorial pitch angles and the geomagnetic latitudes 
where the resonances take place. For interactions that 
occur within 1° of the magnetic equator, the range of 
resonant pitch angles extends about 3° from the edge 
of the loss cone. 

3. Second-order resonant interactions require that 
inhomogeneities of the magnetic field be compenseted 
by wave frequency variations. In this way, electrons 
and waves stay in gyroresonance for relatively long dis- 
tances along the field line. Within a few degrees of the 
magnetic equator the required frequency variations are 
small, and the wave spectrum is relatively narrow. 

4. Numerical calculations have been conducted for 
the L = 5.5 shell. As an example we considered wave 
amplitudes of 10-6 V m-1, consistent with observations 
from the CRRES satellite. Changes in pitch angle can 
be > 1° for electrons with pitch angles near the edge of 
the loss cone. This means that the waves can scatter 
electrons into the atmospheric loss cone very efficiently. 
Thus whistler-electron interactions are viable explana- 
tions of the nearly isotropic precipitation of low—energy 
electrons from the plasma sheet to form the diffuse au- 
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Abstract. 
Nonlinear interactions between plasma sheet electrons and nearly monochromatic 

whistler wave packets are studied. The theory applies to the generation of chorus 
emissions from quasi-monochromatic wavelets observed in the plasma sheet at 
the top of the ELF/VLF hiss band.  The hiss-triggered chorus is produced by 
step-like deformations that develop in distribution functions at the boundaries 
between resonant and nonresonant electrons. Equations are obtained describing the 
wave amplitudes and frequency-time characteristics for propagation at small angles 
with respect to the geomagnetic field. The linear resonant interactions leading to 
wavelet generation are investigated. The resonant wave frequencies change along 
the field lines to compensate for geomagnetic field inhomogeneities. If the electric 
fields exceed the amplitudes of those in the background plasmapheric hiss (> 10-6 

V/m), electrons become trapped in phase space, and their distribution functions 
develop plateaus whose extents are proportional to the square roots of electric field 
amplitudes.   Nonlinear currents generated by the trapped electrons are studied 
to obtain analytical representations of the growth rates and frequency spreads. 
Numerical examples are presented to illustrate our theoretical analysis. 

1.   Introduction 

Magnetospheric plasmas axe rich sources of wave- 
generating processes that reflect linear and nonlinear 
interactions with the energetic electrons [Sazhin and 
Eayakawa, 1992]. The purpose of this report is to de- 
scribe quantitatively the origin of a class of waves that 
pitch angle scatter electrons from the inner plasma sheet 
into the high-latitude ionosphere to form the diffuse au- 
rora [Lui et aL, 1973; Meng et ai., 1979; Schumaker et 
ai., 1989]. Actually, two classes of waves have been 
suggested to explain the required pitch angle diffusion: 
electrostatic electron cyclotron harmonic (ECH) waves 
[e.g., Lyons, 1974] and electromagnetic whistler waves 
[e.g., Inan et ai., 1992; Johnstone et ai., 1993]. Al- 
though both types of wave can interact resonantly with 
electrons in the plasma sheet, both explanations have 
their difficulties. The intensities of ECH waves strongly 

peak within ±3 of the magnetic equator [Paranicas 
et ai, 1992]. However, most of the time observed am- 
plitudes appear too weak to maintain stron^ pitch an- 
gle diffusion [Belmont et ai., 1983; Roeder and Koons, 
1989]. 

Copyright 1997 by the American Geophysical Union. 
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For waves whose frequencies <J are much smaller than 
the electron cyclotron frequency and that propagate 

along the field lines, <j> = 0 , the resonant energies 

KR > 10 keV. Thus initial enthusiasm for adapting 
the model of Kennel and Peischek [1966] to explain 
auroral precipitation from the inner plasma sheet was 
damped by the realization that a critical parameter, 
the magnetic energy per particle Kc, was higher than 
the average energies of plasma sheet electrons. Here 
Kc '= m.c2/2 (fie/w7 cos<£)2, where m^c2, is the elec- 
tron rest energy, the uiv and f2e are the electrons plasma 
frequencies and gyrofrequencies, respectively. However, 
recent studies have demonstrated the continued rele- 
vance of this mechanism. Johnstone et al. [1993] and 
Villalon and Burke [1995] argued that whistlers with 
frequencies greater than half the electron cyclotron fre- 
quency fle and angle of propagation <f> oblique to the 
geomagnetic field can pitch angle scatter low-energy 
electrons from the plasma sheet. This also results from 

KR = Kc 
ML) cos <f> — 1]   [1 (1) 

since as cos <b —► w/f2e, the resonant energy KR —* 0, 
regardless of the magnitude of Kc- 

We mainly consider the generation of hiss-triggered 
chorus in the inner plasma sheet, where the cold plasma 
population that sustains wave propagation has a den- 
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sity of a few particles per cubic centimiter [Koans, 1981; 
Higel and Wu, 1984]. The free energy for chorus gener- 
ation comes from electrons with energy > 10 keV, and 
the waves propagate at close angles to the geomagnetic 
field. After the waves are generated, they may propa- 
gate at large angles and interact with the low-energy 
electrons (< 10 keV) that form the diffuse aurora. The 
chorus elements appear to grow out of monochromatic, 
coherent wavelets with frequencies near the upper edge 
of the hiss band.   Saiiori et al.   [1991, Figure 2], re- 
produced as- Figure 1 herein, shows the connection be- 
tween the chorus emissions and the wavelets in the 
ELF band of frequencies. ■ It illustrates the causative 
relationship between the chorus elements arising from 
by the wavelets immersed in the background, plasma 
sheet hiss. In the ELF/VLF range of frequencies, hiss- 
triggered chorus have frequencies larger than ~0.2 fee. 
For frequencies below ~0.5 fee, chorus waves propagate 
at angles close to the magnetic field direction [Hayahawa 
et al., 1984].    At frequencies above ~0.5 /«, chorus 
propagates close to the direction of the resonance cone 
[Muto et al., 1987]. Finally, we note that chorus emis- 
sions are most commonly detected after substorms in 
the midnight through morning sectors of the magne- 
tosphere  [Tsunttani and Smith,  1974,  1977] and are 
closely linked with microburst precipitation of electrons 
with energies > 20 keV [Paria, 1978]. 

Whistler waves that propagate at large angles to the 
geomagnetic field interact with the warm (500 eV - 20 
keV) plasma sheet electrons, causing them to precipi- 
tate into the ionosphere where they excite diffuse au- 
roral emissions [Rosenberg et al., 1981], Hardy ei al. 
[1990, Figure 3], show that diffuse auroral electrons in 
the morning sector frequently have energy-time disper- 

1435 
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C v 
cr 
v u 

1035- 

888 

Causative 
Wavelet 

Chorus 
Emission 

Time 
Figure 1. Representation of a frequency-time spectro- 
gram with chorus emissions growing from wavelets at 
the top of the hiss band.   The example is taken from 
Hattori et al. [1991]. 

Kk) 

Figure 2. Schematic representation of.a whistler wave 
of frequency (oi, k) interacting with the electrons. The 
Earth's dipole magnetic field is B0, and Z and s 
coordinates along the flux tube. 

are 

sion characteristics similar to the frequency-time char- 
acteristics of chorus. On the basis of first-order reso- 
nance theory, Inan et al. [1992] suggested a direct con- 
nection between morning sector, diffuse auroral precip- 
itation, and chorus-type whistlers. Villalon and Burke 
[1995] showed that second-order, resonant interactions 
between the warm electrons and coherent waves propa- 
gating at upper' band chorus frequencies and large an- 
gles to the geomagnetic field produce very efficient pitch- 
angle scattering. This paper investigates the origin of 
these waves. 

The inner plasma sheet hiss grows through linear in- 
teractions with the energetic electrons, causing the res- 
onant electrons to pitch angle scatter. The resonance 
condition is 

l^hi - 0 (2) 

where (w,k) are the wave frequency and propagation 
vector, respectively, and A|| is the component of k par- 
allel to the geomagnetic field. The harmonic number 
is t = 0,±1, ±2,...; here we study resonance interac- 
tion for the first harmonic 1 = 1. The component of 
electron velocity parallel to the magnetic field is vn, 
and jR is the relativistic factor for resonant electrons. 
The electron gyrofrequency Qe = 2xfce varies with nor- 
malized distance 3 = Z/rL along the field line, where 
r£ = RELV2/Z. The geometry of the interaction is 
represented in Figure 2. In the case of hiss generation, 
fie > w, and the interaction is most effective near the 
equator where magnetic field inhomogeneities are less 
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severe than at higher latitudes. In the equatorial re- 
gion we approximate the geomagnetic field variation as 
parabolic: 

>-W>-1 + ' (3) 
where L denotes value of a parameter at the equator 
3 = 0. Next, define /i = sin2 d(L), where 9(L) is the 
equatorial pitch angle. The pitch angles of resonant 
electrons fall in a range such that /xe < p < ^.. Here /xe 

corresponds to the pitch angle at the boundary of the 
loss cone," which is the same for all electrons, and fi. = 
sin2 9. refers to the upper limit of equatorial pitch angle 
that satisfies (2). It varies with the energy (momentum) 
of the resonant electrons. 

As a concrete example, we approximate chorus emerg- 
ing from the top of the hiss band, as having frequencies 
ne/w < 2.75. For the magnetic shell L = 5.5, the loss 

cone is 9e ~ 3.5 . We further assume that a wavelet 
grows near f}e/w = 2.75, and that the ratio between 
the plasma and cylotron frequencies is w7/fie = 3. We 
obtain that 9M —♦ 9C, for electrons whose energies are 
~ 20 keV. For 50 keV electrons, with the plasma pa- 
rameters defined above, 9, ~ 45 . As illustrated in 
Figure 3a, interaction with hiss waves causes a step- 
like deformation to develop in the electron distribution 
function near the separatix between resonant and non- 
resonant electrons (/i = /x.). The location of the step 
depends on the electron momentum. 

Nunn and Sazhin [1991] and later, Trakhtengerts et 
al. [1996], showed that these step-like deformations ef- 
ficiently produce coherent wavelets at the top of the 
hiss band.   The wavelets are wave packets with small 

but finite frequency widths, and their growth rates are 
obtained in an inhomogeneous plasma. However, Nunn 
and Sazhin [1991] and Trakhtengerts [1996] do not al- 
low for variations of the resonant wave frequencies with 
distance along the magnetic field. In this paper we im- 
prove on their estimates for growth rates by allowing 
a resonant electron to interact with difFerent frequen- 
cies within a wave packet as it moves away from the 
equator, as to compensate for magnetic field inhomo- 
geneities. Wave growths turn out to be very large, and 
the interactions become nonlinear as the electric field 
amplitudes increase.   The nonlinear interactions yield 
trapping of electrons in the potential wells of the wave 
electric field amplitudes and subsequent chorus emis- 
sions emerging from the wavelets. 

In our derivations we conclude that the wave elec- 
tric fields amplitudes which are required for nonlinear 
interactions with the electrons are obtained as func- 
tions of normalized parameters. These are the nor- 
malized electric fields amplitudes e = \q\E/meaj and 
K = c/rLne(L) < 1. Typically for magnetic shells 
L = 5.5, 6.5 K = 4.5 x 10~4 and 6.3 x 10"4, respec- 
tively. We show that for nonlinear interactions the elec- 
tric fields must exceed values such that e ~ K

2
. These 

estimates axe consistent with experimental observations 
[Koons, 1981], which assume electric fields ~ 10-s V/m. 
Owing to large electric field amplitudes, the resonant in- 
teractions become nonlinear and then the electrons are 
trapped. We define the relative phase angle £ as the 
angle between the wave electric field Ex and the elec- 
tron perpendicular velocity vx in the transverse plane 
perpendicular to the geomagnetic field B0. The electron 

Figure 3. Distribution function of resonant electrons for a given momentum p, as a function 
of /i = sin 9{L), where 9{L) is the equatorial pitch angle. Resonant electrons are confined to 
the range pc < p < /i., which depends on p. (a) The step-like deformation develops an interior 
plateau owing to (b) particle trapping in the region where the resonant pitch angles are such that 
M« ~ MT- 
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Figure 4. Flowchart representing processes leading to quasi-monochromatic wavelet generation 
and subsequent chorus radiation and diffuse aurora precipitation. 

kinetic energy changes as dK/dt = ?E-v, where q is the 
electron charge. For the waves to grow from their inter- 
actions with the electrons, £ ~ 0 . Trapped electrons 
satisfy the resonance condition in (2), and their angle 
£ is bounded around the second-order resonance angle 
[Om-ura et al., 1991 ], which depends on the plasma in- 
homogeneities; it is always near f = x/2. They remain 
in resonance with the waves over long distances alon<* 
the field lines. 

The large electric field amplitudes of wavelets prefer- 
ably trap the electrons which are near the resonance 
boundary fj,  =  p.,.    We conclude  that energies for 
trapped electrons are those that maximize the growth 
rates at wavelet frequencies near the top of the hiss 
band.   As a result, plateaus form in the distribution 
function for those electrons interacting with frequencies 
of maximum growth [Galeev and Sagdeev, 1979]. From 
the examples presented here, the plateaus are located 
near pitch angies such ^* = MT ~ 0.5, so that for fre- 
quencies of maximum growth the generated wavelets are 
at the top of the hiss band. The extent of the plateau 
is proportional to the square roots of the electric field 
amplitudes (see Figure 3b). The trapped electrons dif- 
fuse toward smaller pitch angles over times which are 
of the order of the phase correlation between the waves 
and the electrons. As the plateaus disappear owing to 
diffusion, the distribution function reverts to its initial, 
step-like shape.  The time for phase correlation is ap- 
proximately the period of bound oscillations for elec- 
trons in the electric field potentials of the wavelets sig- 
nals [Sudan and Ott, 1971]. 

The trapped electrons create nonlinear, resonant cur- 
rents similar to those associated with triggered emis- 
sions in the plasmasphere [Dysthe, 1971]. The resonant 
currents act as antennas to emit chorus waves. The roles 
of resonant currents for artificially triggering emissions 

in the plasmasphere have been studied by a number of 
authors; see, for example, Selliviell [1967] and Nunn 
[1974]. Here we adopt these concepts to study chq- 
rus emissions, triggered by the electrons trapped in hiss 
wavelets. Experimental results presented by Battori et 
al. [1991, Figure 2] and Koons [1981, Figure 2], show 
that wavelet generation and associated chorus emissions 
last a few tenths of a second. 

Figure 4 contains a flowchart representing the evolu- 
tion of the cyclotron instabilities which are due to ener- 
getic electron populations injected into the inner plasma 
sheet during substorms. The reservoir of free energy is 
provided by the energetic electron distribution functions 
which drive the generation of waves and microburst pre- 
cipitation.  These processes follow the sequence of (1) 
creation of the plasma sheet ELF/VLF hiss which leads 
to the formation of a step in the energetic electron dis- 
tribution function, (2) quasi-monochromatic wavelets 
generations, (3) particle trapping by the large electric 
fields of the wavelets which yields nonlinear currents, (4) 
chorus emissions, (5) microburst precipitation which is 
a result of these linear and nonlinear interactions with 
the energetic electrons (> 20 keV), and (6) the diffuse 
aurora precipitation which is when for large propaga- 
tion angles the chorus interacts with warm electrons 
(<10 keV). The position on the flowchart then reverts 
to the background plasma sheet waves and the step in 
the distribution functions created by these waves. The 
physical processes repeat themselves after a substorm 
injection for as long as the energetic electron popula- 
tion that sustains the background hiss is present in the 
magnetosphere.   In this paper we investigate wavelets 
and chorus generation as steps (2 - 4) of the flowchart. 

The paper is organized as follows. Section 2 contains 
a set of equations describing the temporal and spatial 
evolution of the electric fields propagating at small an- 
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gies with respect to the geomagnetic field.   Section 3 
summarizes the Hamiltonian formulation for a single 
particle interacting with the waves as developed in a 
previous article by Villalon and Burke [1995]. Here we 
represent the evolution of the relative phase angle as 
a function of the magnetic field inhomogeneities, the 
frequency variation, and the electric fields of the waves. 
Conditions for phase trapping are given. Section 4 stud- 
ies the growth of the wavelets near the top of the hiss 
band due to step-like deformations of distribution func- 
tions at the boundary between resonant and nonreso- 
nant electrons. Section 5 investigates the nonlinear cur- 
rents of trapped electrons, that generate the frequency 
band widths. Section 6 shows some numerical examples. 
Section 7 contains the summary and conclusions. The 
appendix describes particle trapping and plateau for- 
mation. 

2.   The Wave Fields Equations 

We take a coordinate system (Z, X, Y), in which Z 
is along the geomagnetic field and X and Y are per- 
pendicular to the field (see Figure 2). We consider a 
quasi-monochromatic wave packet of central frequency 
u and wave vector k which propagates in the Z - X 
plane at an angle $ with respect to the geomagnetic 
field. The frequency bandwidth of the wavelet Awr is 
such that Au|/w < 1. We define another coordinate 
system (u, r, Y), with k along u and r perüendicular to 
it. 

The electric field of the waves is represented by E = 
{Ex, Ey, EZ), and the magnetic field is represented by: 
B = (BX, BY, BZ). We define    " 

E±(u,t)    = — sinfi Ez -r cos<pEx 

= £j_ exp[—i(ku — ut)] 

-Eu(u, 4)    = sin <j> Ex 4- cos <p Ez 

= £tt exp[—i(ku — ut)] 

~ iEY 

(4) 

Similar equations may be written for B\_ in terms of 
&X,Y,z and <ß and -B„. We also write Ej = Sj exp[-i(jfeu- 
ut)], where the index j = X, Y, Z. 

Maxwell equations are 

dEL i dBL 

du 
dBL 

du 
= 

c   dt 
t dEx_ 
c   dt i— {Jrc. + JC)L     (5) 

The term proportional to (Jrc, + Jc)± in (5) corre- 
sponds to the perpendicular components of the resonant 
and cold plasma currents which are defined similarly to 
E± in (4) as functions of JX,JY, and Jz. The cold 
plasma current satisfies [Nunn, 1974]: 

— — iQe cos (j) Jc± = -£EX + iSle sin<6 Jc,u (6) 

where fic and uv are the electron.cyclotron and plasma 
frequencies, respectively. The contribution of the cold 
plasma current component Jc^ = cos <f>Jc,z +sin cj>Jc,x 

is proportional to sin <j> and may be ignored for waves 
that propagate at small angles to the geomagnetic field. 

Combining (4) to (6) and assuming propagation ciose 
to the magnetic field lines, we obtain the equation for 
the wave field: 

(AR   -   iAI)eL+Bj±- + Kd-^ 

=    QJre,,± erp[i(inJ - ut)] (7) 

where the resonant current and other parameters are 

Jrct,±    =    11     Uj_<2vj_    /       dw||    /     d£ V: 
JO J-oo JO 

SF 

AR    =    (u - fte cos <j>) 
dZ 

Ai    =    (u - Clc cos <p) (k2 

B   =    2fc|| (u — ne cos <j>) 

K.    =    — (u — fie cos<?5) — k2 — 
Cr 

4x 
Q    =    — -j u (u — Qe cosip) 

u2/c2) + u2
p u/c2 

(8) 

Note that the cold plasma whistler dispersion relation 
is obtained by setting Ar — 0. The resonant current is 
denned in terms of the components VX,Y,Z of the elec- 
tron velocity as Vj. = — sin<f> vz + cos<f> vx + try 
and the first-order correction to the electron distribu- 
tion function SF which is linear in the electric fields 
amplitudes. 

We write £j_ = \£x\ exp(vp) and J"rej,x exp[i(A||.Z- 
ut)] — Sj_ exp(itp). Here p is a nonlinear phase spread 
due to the wavelet's interaction with resonant, trapped 
electrons. The dimensionless components of the electric 
field amplitudes are (j — X,Y,Z): 

meau (9) 

then £±_ becomes £j_ and the normalized total wave en- 
ergy Wi is 

*" = -§ «J. 
= V 

Cle/u cos<p 

16x ne/w cos <j> — i 

The parallel component of the group velocity is 

B c   Qe/u cos <f> — 1 
K.        77||       ße/cd cos <t> 

(10) 

"».II (cos2 «J + 1)   (11) 

where rj = ck/u is the refractive index and Tjn = 77 cos <f>. 
From Maxwell equations we obtain for the electric 

field amplitudes and frequency wave bands 

AR 

XL 

Ai_ 
' K. 

+ v 7.11 

lex, 

=    -2x 

=    2x 

5]£i| 1    aiej.1 
dZ        \e±\    dt 

(jx ej + Jl gj.) 
16xWjt 

dip       d<p 
lldZ + ~dt 
*(jj.el - j'lgj.) 

löxWi 
(12) 
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where j'x = \q\S±./mecu. The frequency bandwidth 
of the chorus emissions is obtained from the nonlinear 
phase shift as 8w = [dtp/dt) and the wave vector as 
<5i|| = —(dip/dZ). Let us define 

7*  = -4x 
16xWt 

(13) 

The right-hand sides of both equations in (12) are ob- 
tained by taking the real and imaginary parts of 7*, 
respectively. Here 7' = lG + j (Sw - vg^6k§) and jc 

is the growth rate. 

3.   Single Particle Interaction 

We define the normalized time r = if2e(I) and length 
3 = Z/TL as introduced in section 1 and define the 
relative phase angle between a wave and an electron: 

&    =   ^tan"1^ ':) + £ rLin ds'- 
(J T 

(14) 
Px' ' J0 '""""      Qe(£) 

where PX,Y 
a^e dimensionless canonical momenta in the 

X, Y directions; the canonical action is [ Villalon and 
Burke, 1995] 7 = [Q(L)/2ü(s)] [P% + P2]. Differenti- 
ating (14) with respect to s, the length along the field 
line, to zero order in the electric field amplitudes gives 

^£ = *k(  ^_..,„ _, *M*)-*7* 
ds (15) ne(i)*p„ 

where « = c/rLCle(L) < 1, /i = sin2 0(1), and 0(1) 
is the equatorial pitch angle. For resonant electrons 
dti/ds = 0, which leads to the condition (2). We shall 
consider wave-electron interactions at the I = 1 har- 
monic and then £/ = £ and assume that the wave fre- 
quency spectrum is such that uih < u < uT. Here ui? 
is at the top of the hiss band, w& is a lower frequency 
in the hiss band, and the bandwidth of the wavelet is 
obtained as Aw; =WT- WJ. The upper frequency 0/7 
is shown in section 4 to be the frequency of maximum 
growth. We also assume that the resonant wave fre- 
quency for a given electron changes along the field line 
according to the linear approximation: 

1   du n  
— -7- = xVh-l a? ds (16) 

The resonant interactions extend along the field lines 
for 1 < h < km. Note that x is defined in terms of 
the wave frequency spectrum Ao/r and the extent of 
resonant interaction as x = 2(Am - I)-1 Aui/cuT. For 
a given electron we require that interactions take place 
with different frequencies within the wave packet so it 
stays in resonance, d£/ds — 0, over long distances in 
s. Thus the resonant wave frequencies change along the 
field lines within the bandwidth of the wavelet Awf so 
as to compensate for magnetic field inhomogeneities. 

To first order in the wave electric field amplitudes, 
the time-dependent Hamiltonian is 

7izZlR-^   E   T<(I,iV) sinfc       (17) 

where P = s/j^ - 1, 7* is the relativistic factor, and 

•     [(£1 + £2) Ji-i(a) + (cx - c2) Ji+1(a)](18) 

where the symbol J* represent Bessel functions whose 
arguments a = k±r and r, the Larmor radius, is given 
as r = (c/n.) [2rne/ne(.E)]x/2, where I is the dimen- 
sionless action; for I = 1 we write T* = T. 

The equatorial cyclotron resonance condition for the 
I — 1 harmonic is denoted by d^x,(u,fi,p)/ds = 0 
and may be obtained from (15) by replacing Clc(s) by 
Qe(£). For resonant electrons the equations of motion 
for the canonical variables reduce to those of the phys- 
ical variables at the resonance. Then pj| < p» „, where 
P||iCr satisfies the resonant condition d£j,/ds = 0 for 
w = wj. The range of resonant pitch angles are such 
that /ie < /i < fj^r, where fic corresponds to the loss 
cone boundary. For given particle momentum p and 
frequency u we obtain from (2) 

M(p)W) = 1 _ i1-^/";^      (19) 

where p = JRV/C is the normalized momentum. The up- 
per boundary w is obtained from (19) setting w = wT, 
a frequency at the top of the hiss band. In addition, 
if ur is also the frequency that maximizes the growth 
rate (see section 4), then electrons satisfying the res- 
onance condition in (19) have pitch angles such that 
Pr ~ 0.5 and their momenta are obtained in terms of 
WT and ßr- Owing to the interactions with the plasma 
sheet hiss, the electron distribution function eventually 
develops a step-like deformation near 9(L) = 0T ~ x/4, 
the boundary between resonant and nonresonant elec- 
trons for the frequency which is at the top of the hiss- 
and maximizes the growth rate. For given p and pitch 
angles p < pr, the equatorial cyclotron resonance con- 
dition for the I = 1 harmonic d£z,(w, /i, p)/ds = 0 is sat- 
isfied for resonant frequencies w < wp decreasing with 

Owing to the formation of the plasma sheet hiss, the 
distribution function of resonant electrons is depleted 
for p < pb, where fxc < fj.h < p?. The distribution 
function has a step-like deformation at the boundary 
of resonant and nonresonant electrons. The size of 
the step is approximately <5/i = pr — ph, which is re- 
lated to the bandwidth of the wavelet as shown next!. 
Then the lower limit of resonant frequencies « = 0/5 
is obtained from (19) by setting /i = jjLh. We define 
h,T = wj,r/ne(£) and A/, = Aw,/ne(I) = fT - fb. 
The bandwidth of the wavelet A// may be obtained as 
a function of momentum p and uj solving for 

Sfx ß.(p)    = fb 
l cos 4> - -i][i-A]2 

-    [fr1 costf-l][l_/T]a 

ß.(p)    = 
Wp cos 4> 2 

(20) 
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Note that A/i increases with increasing Sp. = psv — 
Pb, /?., which increases with particle energy, and cold 
plasma density. The maximum value that Afi and 
Aoi[ may take for fixed p? is obtained setting yn = 
fic, which yields upper limits for the band widths of 
wavelets. As matter of fact, approximately we find that 
A/ ~ (Sp.) ß. ft. I {I - 3/|). By moving away from 
the equator, ße(j) increases, and for fixed values of p 
and w, pitch angles satisfying the local resonance con- 
dition must decrease with increasing distance s. On the 
other hand,., if p and p, are fixed, the parallel momen- 
tum pj| = p(l — ph)1*2 decreases and Qe increases with 
5, then w must also increase to keep in resonance with 
the electrons. 

Next we differentiate (15) with respect to s and com- 
bine it with the equations of motion presented by Vil- 
lalon and Burke [1995]. The second derivative of the 
relative phase of whistlers and resonant electrons rep- 
resents the deviation from the resonance condition due 
to the inhomogeneities of the geomagnetic field which 
we refer to as a and a finite electric field amplitude 
contained in the term we call p 

Here 

—    =    a + p cos& 

ß   P   ftr \ 
K  p„ 

*A(M) 
1 A(M)    =    — (-fix + 2i) 

tan2 9 [1 - 7ä + 

ß    = 

KP\\ 
1 hi 

/cpy 

1) 
l2 

(21) 

(22) 

(23) 

(24) 
ß«(£)J 

where we assume that dr^/ds = 0, which establishes a 
relation between the variation of Jbjj and u)(s) along the 
field lines. Here 9 is the particle pitch angle and 9(L) 
is its equatorial value. The normalized electric field 
amplitudes contribute to p in (21), as T//c2. Given 
that K2 ■< 1, the normalized electric fields must be of 
the order of K2

 ~ 10~7 to make significant contributions 
to the interactions. 

From (22) we have that at h = 1, a = 0. In addition, 
we also require that a = 0 for h = hm and for the 
pitch angle 9. at the boundary between resonant and 
nonresonant particles, which is a function of frequency 
and resonant energy as obtained from (19). By taking 
ui = WT, which is a frequency at the top of the hiss 
band that mSaximizes the growth rate, then 9. becomes 
9<r. For interactions occurring near the equator, we 
obtained the following relation between x> #-, and hmi 

match function A, which represents the deviation from 
the second-order resonance condition d2£/da2 = 0 due 
to the plasma inhomogeneities, approximately is 

(1 - is A» ne(x) )   tan2 B.= xKn-2        (25) 

Note that as tanff. » 1, then % > 1-   Then the mis- 

A    ~ 
1       w 

V [tan2 6 - tan2 9.\ 

K    [ÜJtil COS0- l]l/2 

(26) 

(27) 

All pitch angles pe < ß < PT contribute to the inter- 
actions. Note also that V > A

-1
 2> 1, and then unless 

9 —► 9,, the inhomogeneity factor ]> 1. For 9 ~ 9. 
and for waves that propagate near the resonance cone 
angle, we get A —► 0. 

Now we make a Taylor expansion of the phase angle 
£ around the resonant point s — SR, 

£ = t(°)+l;W(s-3R) + {W(3-3R)2/2+Z(3\s-3R)3ß 
(28) 

Since <f is the angle between the wave electric field 
and the electron perpendicular velocity, maximum wave 

0 
growth is achieved near £ = 0 . When £ is near T/2, the 
wave magnetic field and the resonant current are aligned 
[Omura and Matsumoto, 1982] and one expects large 
modification on the wave frequencies. In sections 4 and 

0 
5 we study the two cases £ ~ 0 and £ ~ T/2, respec- 
tively. This is because for wavelet generation we need 
maximum growth of the electric fields when £ = 0 . 
In addition, second-order resonant interactions, besides 
satisfying the resonance condition in (19), the phase an- 
gle cos £ ~ —a. I p. Near 9 ~ 9., the inhomogeneity fac- 
tor A —► 0, and we find that for second-order resonant 
electrons, £(°) = x/2. Particle trapping is realized only 
under conditions of second—order interactions [Omura 
et al., 1991]. Thus the frequency shifts that lead to the 
chorus emissions must be found under the conditions of 
second-order interactions. 

In the case of the plasma sheet hiss, the electric fields' 
amplitudes are small (i.e., T/K

2
 < 1 ), so we take 

p <C a, and the electrons cannot be trapped by the 
waves. However, there may exist wavelets at the top 
of the hiss band for which the wave frequency spec- 
trum is very coherent. The wavelets may grow near the 
equator, owing to the inhomogeneity of the magnetic 
field, which is compensated by the changes of the res- 
onant frequency along the field lines, and as a result, 
a ~ 0. According to previous results by Villalon and 
Burke [1995], the maximum exchange of energy between 
waves and particles take place near the angle ^°) = 0. 
In this case we may approximate (28) by 

*=   £*2 +\x{K9)s* (29) 

since as \(h, 9) —* 0, (i.e., 9 — 9.), we need to consider 
the contribution of the electric fields. 

For particles with 9{L) near 9., the inhomogeneity 
factor ce is very small and is actually zero at h = 1 and 
hm, which means that the waves can efficiently trap the 
electrons. Electrons trapped by the waves must satisfy 
the condition p ^> a, where p and a are given in (21) 
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and (22).  By multiplying both sides of (21) by d£Jds 
and integrating once we obtain 

12& = C + j' «£* + />»* 

Z = l + V2\P\^s + V2\pf* + ix(h,&) 33 

y(3l) 

4.   Wavelets Growth Rates 

In this section we investigate the growth of quasi- 
monochromatic waves at the top of the hiss band. The 
resonant frequency bandwidth Awt is denned in (20) as 
a function of the step in pitch angle 6p = px — pf, owing 
to deformations in electron distribution functions at the 
boundary between resonant and nonresonant electrons. 
The hiss waves initially grow owing to their linear inter- 
actions with electrons satisfying the resonance condition 
(19) and eventually cause distribution functions to de- 
velop step-like deformations in p which depends on the 
electron energy and fa on the top frequency in the hiss 
band. The theory of wave growth is described next, 
considering the inhomogeneity of the Earth magnetic 
field 

We normalized the particle momentum p to (mec)~l, 
the velocity v to c"1, and the distance s to rj1. The 
coupling coefScient between waves and electrons in (13) 
is obtained in terms of the resonant current which is 
denned in (8). One shows from the linearized Vlasov's 
and Maxwell's equations that the first-order correction 
to the distribution function of resonant particles SF is 
a function of the zero order distribution function F as 
denned below in (34) and (35) and depends linearly on 
the electric field amplitudes of the waves [Omura and 
Maisumoio, 1982]. In an inhomogeneous plasma the 
growth rate as defined by taking the real part of (13) 
is obtained from the following expression [Bespalov and 
Trakhtengerts, 1986] 

* 1       f+°° err 
CT    /        iRpdp    I      (hdp) 

P 9F OF   =    £ — 
2 dp 

+ 
TAW - M 

dF_ 

(30) 

where C is a constant of integration. Since s < p/X, 
particle trapping is easily realized for sufficiently large 
electric field amplitudes (say, ~ 10~5 V/m ) and for 
smaller values of X(h, 9) as denned in (23). For those 
electrons whose pitch angles are near the jump of the 
distribution function at 9(L) = 9., X is very small. Thus 
we may expect strong particle trapping for the reso- 
nant electrons near the jump boundary. For electrons 
trapped near the phase-stationary point at the bottom 
of the wave electric field potential wells, we may ap- 
proximate 

"«(£) ne(£)2 N, 

2x    f+°°        f" 
A   =   T /      ds        <k'«PH*(*.*')](33) 

where #(s, s') = j't, dS (d£/dS). In a homogeneous 
plasma we obtain from the Dirac delta function [Lyons 
and Williams, 1984], A — 2T

2
«"

1
 6{d£Jda), which 

near resonance gives the contribution A = 4T
2
 (1 - 

hp.) [ne(i)M„]. 
Next, call x = hp and, locally, the distribution func- 

tion is given by 

^IOTW  
A^OF (32) 

where 

F    = 

G    = 

G(x,5p) F0[px,n) 

-ffi(z)(tanh.z 1) 

-ff2(z)(tanh.z-l) (34) 

where z = 2[/ir(p) - p]/Sp and 5p is the size of the 
step deformation. For p. < pb, then G — ^(i), and 
for M > Mr + 6p, then G -* g2(x). If we take the limit 
pt —- PT, i.e., 5p —•■ 0, then we recover the step function 
used by Nunn and Sazhin [1991]. 

Here we approximate F0 by a bi-Maxwellian distri- 
bution of thermal momenta a j. and ccj|. The anisotropy 
parameter is denoted by .4, and the mean energy is ap- 
proached by < p2 >= (A + 1) ctj. 4- ct||. Following the 
normalization of Trakhtengerts et al. [1996], we write 

= <*£) 
CA     = 

exp 

nh 

cm 

**l2?{A + l)<xLa\'2 
(35) 

where nh is the density of energetic particle. It reflects 
the anisotropy and the mean energy that represent the 
hot electrons population in the plasma sheet. The func- 
tions gi,2(x) are pitch angle eigenfunctions of the diffu- 
sion operator. Here g2(x) represents the part of the dis- 
tribution function that does not interact with the waves 
and then g2 ~ 1. The pitch angle eigenfunction gx(x) 
results from considering the effects of the plasma sheet 
hiss in the resonant part of the distribution function. 
Eventually, it becomes g2 < 1 as the resonant particles 
diffuse into the loss cone owing to the interactions. 

Next introduce the operator OF = (OF)i + [OF)2. 
Here (OF)1 represents the part of the distribution func- 
tion that does not depend on the step deformation and 
which .originates the plasma sheet hiss. The operator 
(OF)2\&cts over the step deformation of the distribution 
function in (34) as described by the functions tanh.z, 
and it is responsible for the generation of the wavelets 
at the top of the hiss band. From (33) we obtain 
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Cie(L) 

I 7AW 
h — 1 — h(jj. — fir) 

(OF)!    =    G (OF0) + - F0 (tanhz + 1) (09l) 

-F0{tanhz-l)(Og2) (36) 

In what follows we study wavelet generation and then 
only consider the contribution of the step as represented 
by (CJ^and ignore (CF)i- This means we do not in- 
vestigate the generation of the hiss band. Thus when we 
refer to frequencies at the top of the hiss bands, we as- 
sume they are known from experimental measurements. 

After integrating in p. we approximate 

ne(£) 
II Q{xT,8p) TCA{xT,xc) 

(IT-T) 

(37) 

p      CAA\a±rp  ^N2        1 

n.(i)' 

(V\\PR)  exp[- 
PRW

2
, 

Here the functions Q(XT, 8p) and X1A(XT- 

by 

g = 
Jit 

ob 9i(x) -gz(x) 

X.A      = 
1 

2AI I 
(xT -Si) (1 

dyy* exp(-y) 

16xWjfc 

(38) 

c) axe denned 

i(p,,,s)   (39) 

(40) 

By taking the limit x& — sT in (39) leads to Q — 

[ffi(zT) - ?2(=T)] (1 - xT)~l A(p|j, ST). Also, we have 
y = p2x/a±, and yc,m are evaluated for the resonant 
momenta pc,m, respectively. For pr and yr we solve 
d£(cj, p,p)/ds = 0, with w = wj, and /x = p? (x = XT). 

For pc and yc we solve the resonance condition for wj- 
and pe (x = xc ), so all possible resonant momenta are 
considered for interactions such that the freauencies and 
pitch angles axe within the ranges (o/& <<J < u*r) a^d 
0*e < A1 < MT)i respectively. 

The function A is evaluated for p|| = pii(h) from the 
resonance condition, and all other quantities appearing 
in (37) and (38) should be obtained for p ~ p? near the 
jump boundary, which corresponds to the frequency of 
maximum growth uif- In an inhomogeneous magnetic 
field the resonance condition, together with the disper- 
sion relation for whistlers, yields the resonant momen- 
tum of the energetic particles a3 obtained by Kennel 
and Petckesk [1966] 

PR(h?     =     [ Q«ffl ia ML) 
WpX. cos <j> 

"7R 

h cos <f> — 1] 

[h- 
«<(£)J 

(41) 

Note that (41) is the same as (1) rewritten in terms of 
momentum. 

To obtain the growth of wavelets near the top of the 
hiss band, we must take the real part of (33). Next in- 

troduce the notation A = As-f-tAr, where AR,J denotes 

the real and imaginary parts of A. If the amplitudes of 
the electric fields £±_ —* 0, one may ignore particle trap- 

ping, and then to achieve maximum growth, we require 
that £(°) = 0 in the Taylor expansion that leads to (29). 
Under the limit p —* 0 we show 

AÄ=I 
,+ca 

exp[i£(*)] is 
x 

3/c" = TrF(7)2(T)2/3 («) 

which is proportional to K~
1
^
2
 as shown also by- Trakkt- 

engerta et oi. [1996]. Following the definition in (26), 
we obtain 

AÄ = xr(W3 JL ^^ 
3 ;7|| (j     I tan- 9 

1 12/3 

tan" 9? I 
(43) 

where 2? is denned in (27) and we have taken 9. ■= 9y. 

This expression for A« assumes large values for pitch 

angles near the jump of the distribution function. This 
singularity in 9 = 9T is not present in the theoretical 
analysis of Trakhtengerts et al. [1996]. This is because 
we allow for the frequency of resonance to change as 
in (25) to compensate for the magnetic field inhomo- 
geneities so that A as approximated by (26) is very small 
for 9 — 9?. To estimate more accurately the value of 
Aä near fl = 5y, we consider that £ = ps2/2. In this 
case as 9 — 9T, then AR —► 2X

2
/ä/?. 

The frequency of maximum growth fa may be ob- 
tained combining (37) and (41) as a function of ß., af- 
ter denning ß, = /?.(o:||) as in (20), and / = u//Qe(Z). 
If we take JR cos <p ~ 1 for maximum growth, fa is ap- 
proximately given by 

fa = n&) 
fr/2 

67A 

3 -j- ß./2 

6JR 3T£ 

1/2 

44) 

Note that for ß. ~3> 1 and for waves propagating along 
the field lines, then fa ~ (3 + 0.5/3.)-1 < 1- When 
ß. —* 0, then fa —* cos^. As the particle momentum 
or plasma density increases (ß. 3> 1) and the frequency 
of maximum growth decreases. 

Next we assume that the frequency of maximum 
growth is given by the upper limit of the wavelet band- 
width, which is known from experimental measure- 
ments. To maximize the growth rates for frequencies 
at the top of the hiss band, we must obtain /3» in terms 
of fa as follows: "* 

ß- = T^ [cos*-fa] [l-7*/rf (45) 
fa 

We introduce an empirical factor <p > 1/2 for the pur- 
pose of the discussion that follows. Combining (45) 
and the resonance condition in (41) with h = 1, we find 
that <p = 1 corresponds to pr = 0.5 and cp = 1/2 to 
PT = 0.   Note that (45) leads to the result in (44) by 
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approximately solving for fy < 0.5 and setting <p = 1. 
Recall that 0, as in (20) is a function of the electron 
resonant momentum and the magnetic energy per parti- 
cle. Since w7/fie is given by external plasma conditions, 
the values that ß* take from (45) with <p = 1 define a 
range of electron energies (momenta) that interact with 
waves at the top of the hiss band for pitch angles near 
M = 0.5. if the mean energy of the distribution function 
in' (35) is smaller than the energies obtained from (45) 
with <p = 1*. then one must consider other interactions 
as having significant contributions to maximum growth. 
The other interactions with less energetic particles have 
1/2 < <p < 1 and their corresponding resonant pitch an- 
gles ft < 0.5. 

The imaginary part of A is defined as 

/»+00 2x f+co                       [' 
A/    =    — /       ds cos £(s)    /     sin £(s')ds' 

K J—co                               J—ca 

2x /+00                     f* 
—    — /       ds sin£(j) /      cos £(.»') ds' 

K J—co                            J—co oo 

+oo 2x   r°° _,     i 
~ /        ds  (46) 

Now we take the phase angle £ = s3 + 6s2, where x = 
(A/6)1/3* and b = {p/2){Q/\fl3. This phase angle does 
not represent particle trapping as explained in section 
3, and after substituting in (46), we obtain Kj = 0. 
Next we study particle trapping and chorus emissions. 
We have already argued that particle trapping is easily 
realized when the inhomogeneity factor A —► 0 and the 
stationary point for the phase angle is near £ = x/2, as 
in the Taylor expansion (31). 

The electric fields must become large enough near 
the boundary of the step deformation to satisfy p > 
(■\/2A/3)2/3. The inhomogeneity factor A is estimated 
from (26) as function of the step in pitch angle 6fi, 
then X(6fi) = [tan2 9. - tan2 9b] V. By defining EJ_ = 
2/i-1/2 T, we show 

ex = A(5/x) 
2/3 

_1_   l-7Wflg 

V2     q, w/ne tan0. 
(47) 

If normalized electric fields ~ i±, then particles may be 
trapped, which yield chorus emissions. 

5.   Nonlinear Frequency Bandwidths of 
Chorus Emissions 

Chorus emissions are triggered by wavelets whose 
electric fields have reached large amplitudes to trap the 
electrons as in (47). The resonant interactions between 
trapped electrons and the wavelets are nonlinear, and 
they originate frequency spread that are described in 
this section. Owing to the interactions with the waves, 
the distribution function evolves toward a plateau in 
the region of phase space that corresponds to trapped 
particles [Galeev and Sagdeev, 1979]. Qualitatively, this 

is shown in Figure 3 and is illustrated in the appendix. 
Particles are more easily trapped near the jump bound- 
ary /i» of the step-like distribution function because 
there, the electric fields are larger and the mismatch 
function X(h, 9) ~ 0. Note that if we consider the 
wavelets near the top of the his3 band and whose fre- 
quencies ü>T are obtained by maximizing the growth 
rates in terms of ß» as in section 4, then /x. becomes 
Mr ~ 0.5. Subsequently, we have that near z., ?i,2 are 
given in the appendix and then we approximate 

a(s.,AM)- AM &(».)+si(x.)] (1-x.) 
A(p||,z.) 

(48) 
where ffi^C2«) represents the derivative of the functions 
<7i,2 with respect to z and are evaluated at the jump 
boundary z„. The width in pitch angie of the plateau 
may be estimated from (30) by taking C = 0 and the 
length of the interaction small enough, which yields 

Aü_ = ±2^2±MQpV2 
1-M. V\\ u 

(49) 

The nonlinear coupling coefficient is obtained from (37) 
through (40), which yields 

-ELj.  =  ruAAifcw+^JHi-*.)-* 
}CA(x.,Awi) A(p||,z.) (50) 

where Awi is the frequency width of the wavelet that 
triggers the chorus emissions. In addition, we find 

Cx(x„,Aw,) = —   /     dyy* exp(-y) ~ —-T.(z.) 

(51) 
where j^,6 = p*(oJT,b)2/<*j.- Herep.(w&) andp.(wr) are 
obtained by solving the equatorial resonant condition 
d£i,(u), fi,,p)/ds = 0 for p and setting u> = uj, and &?, 
respectively. 

To find the frequency spread we need to.take the 
imaginary part of the function A(p||) as defined in (33). 
We substitute the phase shift £ by its expression in 
(31), i.e., ( = V2> + i3 d/3), where x = pH*s and 
d. = l+A(2/j)_3/f2. Then we approximate A = Aü+tAj, 
as 

A ~ 
p K h*"**r-"§r (52) 

where t? = (8/9d)1^2 is the argument of the Bessel func- 
tion K-L/z] we have that for d = 1, Ki/3 ~ 0.43? If A < 
(2p)3/2, where p is defined in (21), then Jm/Qe{L) ~ 
p~lt2, and is proportional to the square root of the 
inverse electric field amplitudes. For A > (2p)3^2 we 
obtain d ~^> 1 and Aj —► 0, thus large inhomogeneities 
cannot trigger emissions. 

The chorus emissions are triggered by the wavelets, 
and their frequency spreads are represented by 6u. We 
obtain 6w as function of the bandwidth of the wavelets 
Auii as 
61. 



VILLALON AND BURKE: WHISTLER WAVE GENERATION IN THE PLASMA SHEET 14,391 

Figure 5. Density of cold plasma particles versus ß. 
as defined in (20) for three values of the normalized 
electron momentum. 

6w 

Aur 
= [2. ■~^]2rLfki(*.)+*;(*.)J (53) 

As shown by Omura et al. [1991], if we take A = 0, 
d = 1, then Su ~ p~ll2 ~ \£x\-1'2. As the electric 
fields become small, i.e., A > (2p)3/2, then {pd)~ll2 — 
(Jpßf12 and 8u ~ p+1^, and since p < 1, the fre- 
quency shifts can be quite small, as shown by Skklyar 
et al. [1992]. Considering the stationary case, the elec- 
tric fields reach the value 

dZ = £**IM*) \£i |V2 (54) 

For A —• 0, d = 1, and since p ~ |£j.|, then the right- 
hand side of (54) is independent of the electric fields. 

6.   Numerical Examples 

As an example, we study electron-whistler interac- 
tions at the L = 6.5 shell, where the equatorial elec- 

tron gyrofrequency is Qe(L) = 2 x 104 rad/s. The 

loss cone width is about 3 , and as indicated before, 
K = c/ne(L)rL = 6.3 x 10~4. We consider electrons 
whose normalized momenta are p = 0.2, 0.3, and 0.4 
which correspond to energies between ~10 and 40 keV. 
We shall calculate our physical variables in terms of ß., 
as given in (20), which is proportional to the inverse 
of the square of the normalized magnetic energy per 
particle, [ße(£)/wp]2, and to the square of the electron 
momentum. For all the examples presented here we as- 
sume waves that propagate along the field lines so that 
cos<£ = 1. 

Figure 5 shows the density of cold plasma particles 
that sustain the waves versus ß, for the three different 
momenta indicated. By increasing the electron energy 
(momentum), the number of cold plasma particles that 
produce the same value of ß, decreases. If these calcu- 
lations were done, say at L = 5.5, the number of cold 
plasma electrons axe larger than at L = 6.5 for the same 
values of ß. and momenta as in Figure 5. 

Figure 6 shows two relevant physical parameters in 
the theory of wavelets generation indicated by wr/fie(I) 
and AWI/WT, and by taking three different values for 
the size of the step in the electron distribution func- 
tion, i.e., 5fi = 0.5,0.25, and 0.1.  Here wT is the fre- 
quency of maximum growth and is obtained from (44) 
as a function of ß., and Aw; is the normalized frequency 
bandwidths of the wavelets which is calculated by solv- 
ing (20) also versus ß..   Note that as ß.  -+ 0 then 
ijT _► fje(£), and as ß. increases then uT becomes 
smaller.  The frequency bandwidths saturate at about 
AWI/WT ^ 0.4 for large /?., assuming 5p. = 0.5. Exper- 
imental observations show that frequencies at the top 
of the hiss spectrum are about 1/3 of the electron gy- 
rofrequency.   Thus according to our estimates for the 
frequency of maximum growth, ß. > 1 for the physr 
ical parameters to be realized.   Next we consider t-wo 
examples taken from experimental papers to illustrate 
better the relevance of our calculations for the frequen- 

0.5 

5u = 0.5 

0.3    — 

0.1    <-- 

Figure 6. Frequency of maximum growth wT normalized to electron gyrofrequency Qe versus 
ß.. Frequency spread of the wavelet ZWt divided by uT for three values of the size of the step 
Sfj. versus ß, as obtained from (20). 
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cies and bandwidths of wavelets in terms of normalized 
parameters presented in Figure 6. 

Figure 1 contains results from Hattori et d. [1991], 
which may be compared with the calculations in Figure 
6. In Figure 1 the ratio fT = wT/ne ~ 0.34 and the 
interaction occurs near the equator where the exper- 
imentally measured cyclotron frequency, fcc = 3.039 
kHz, is compatible with the dipole model for the ge- 
omagnetic field. According to our results in Figure o, 
the ratio fy== 0.34 corresponds to ß. ~ 2. For resonant 
energies between 10 and 50 KeV, the plasma density is 
just a few particles cm-3, in agreement with results by 
Sigel and Wu [1984]. The bandwidth of the wavelets is 
also estimated from Figure 1, Aw(/wT ~ 0.1 and then 
0.1 < 5fi < 0.25, which corresponds to a distribution 
function whose step deformation is ~ 6 . 

We also compare calculations in Figure 6 with the 
example given by Koons [1981]. At the magnetic shell 
1 = 6, the ratio is taken fT ~ 0.1, the plasma den- 
sity was assumed 29 particles cm-3, and the interacting 
electron energies 10 - 15 keV. According to our calcu- 
lations, the ratio fT = 0.13 corresponds to ß. = 10, 
which for energies of ~ 15 keV yields a cold plasma 
population ~ 30 cm-3, in agreement with the above 
assumptions.   As acknowledged by Koons [1981], this 
cold plasma density is large compared to experimental 
measurements under normal conditions. Next consider 
a plasma whose density is ~ 5 particles cm-3 so that 
at L = 6, wP/f2e = 5.  Assuming ß. ~ 10, we obtain 
the electron momentum p = 0.6, which corresponds to 
an energy of ~ 85 keV, and according to the resonance 
condition in (19), the pitch angle is ~ 22°. This energy 
is larger than that taken by Koons [1981] for produc- 
ing waves fT ~ 0.1 in a cold plasma of low density. 
This example serves to illustrate the main points of our 
calculations in Figure 6 in terms of normalized plasma 
and particles parameters as defined through ß. to ob- 
tain frequencies that maximize the growth rates. 

To investigate the effects that inhomogeneities and 
multiple resonances have on the linear growth of the 
waves, we introduce the ratio between the growth rates 
7G and js. Here jG is calculated by taking the real 
part of (37), recalling that 7* = 7G + i(Su - VgÄ «:|() 
and substituting AÄ by the expressions in (42) or (43). 
In a weakly inhomogeneous plasma and smooth distri- 
bution functions, the electron-whistler interactions take 
place with single-frequency waves. Then the stationary 
phase points obtained solving for d£/ds = 0 as func- 
tions of 5 are not degenerate, which means that near 
the equatorial cross section there is only one root. In 
this case of weak inhomogeneity the growth rate js is 
obtained similarly to jG from the real part of (37) and 
by approaching AR by the Dirac delta function as given 
after (33). We also define an angular dependent growth 
rate, -fG,ff(p-), such that the actual growth rates are 
1G,S = JQ

T
 7G,M(H) dfj./pr. We calculate in Figure 7 

the following 

7*(/i) ~4x2   ^fl. A* (55) 

versus p = sin2 9(L), 9{L) is the equatorial pitch angle. 
The linear growth rates are enhanced by at least a fac- 
tor of 15 owing to the inhomogeneities and distribution 
functions with jump boundaries. We represent the case 
ß. = 5 for the normalized electron velocities as indi- 
cated in Figure 7. The two lines.that are almost parallel 
below 7G/7J? = 10 are obtained by setting % = 0 in the 
definition of A in (23).  The top two lines next to the 
numbers in Figure 7 that indicate the electron velocities 
become very large near p. = 0.50. They are calculated 
assuming that the frequency of resonance varies along 
the field line according to (16), where x > 2 is given 
in (25) so the magnetic field inhomogeneities are com- 
pensated by the frequency variation. In this case. AR 

goes to infinity owing to the singularity near 9 = 9T. 
We have estimated the value of A^ at 9T by including 
the effects of finite electric fields. Then we substitute £ 
by (29) in the integral defining AR in (42). Notice that 
the singularity near 9? is not present in the analysis of 
Trakhtengerts et al.   [1996].  The growth rates can be 
very large at the boundary between resonant and non- 
resonant electrons. This is because for a given electron 
the frequencies of resonance have been changed along 
the field lines according to (25) to match the magnetic 
field inhomogeneities near the jump boundary. 

Figure 8 represents the electric field amplitudes thresh- 
olds versus ß, for the transition to the nonlinear regime 
of particle trapping and chorus emissions. The electric 
fields are given by (47) taking 5p ~ 0.5, 9b = 9C as 
the loss cone boundary and considering the frequency 

50 

jE   30 
\ 

10 

n- 
Figure 7. The ratio 7^/7^ as in (55) plotted versus 
fi = sin2 9(L). We take /3. = 5 as in (20), and the num- 
bers next to the lines are normalized electron momenta. 
The linear growth rates are enhanced by a factor equal 
to this ratio owing to the magnetic field inhomogeneities 
and step-like distribution functions. The two parallel 
lines below JG/JH = 10 are obtained by taking the fre- 
quency of the wave constant along the field lines. 
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200 

100 

0.26 

Figure 8. The electric field amplitude thresholds for 
nonlinear interactions, in 10~6 V/m, obtained from 
(47), versus ß., given in (20). The minimum electric 
field is 6.6/iV/m for p = 0.2 and ß. = 10. The fre- 
quency of the wave is wT, and numbers next to the 
curves are normalized electron velocities. 

6 
3 
bo 
C 
a 

0.20 

0.12 

ß. 
10 

Figure 10. Bound oscillation time, in seconds, of 
the electrons in the potential wells of the wavelets as 
given by (56) versus ß.. These osculation times ap- 
proximately correspond to the duration of the plateaus 
represented in Figure 8. We show p = 0.2,0.3, and.0.4. 

of maximum growth oij. The numbers next to the lines 
are the normalized velocities. The minimum electric 
field is 6.6 x 10~6 V/m, which corresponds to ß. = 10 
and p = 0.2. These electric field amplitudes are com- 
patible with the values observed experimentally since 
according to the article by Koons [1981], electric fields 
are at least of the order of 10~s V/m for the triggering 
waves. 

The electric fields represented in Figure 8 build near 
the boundary between resonant and nonresonant elec- 
trons, as explained in section 5, and they create plateaus 
in the distribution function as a result of the electron 
trapping. Figure 9 represents the extent of the plateaus 
for the equatorial pitch angle A8(L) in degrees near 

8T ~ 45 versus ß. as calculated from (49). Similar 
to Figure 8, the numbers next to the lines are the nor- 

0.3 

CD 

< 

Figure 9. Sizes of the plateaus, in degrees, for the 
electron pitch angle distribution function as function of 
ß, for p = 0.2, 0.3, and 0.4. The electric fields that 
produce these plateaus are calculated in Figure 8. 

malized electrons velocities. These plateaus trap the 
electrons that form the nonlinear resonant currents trig- 
gering the chorus emissions. 

The duration of the plateau or the nonlinear trap- 
ping time is approximately the oscillation time of the 
electrons around the equilibrium position £ = x/2 as 
obtained from (21). Following the definition given by 
Sudan and Ott [1971], time correlation is one oscillation 
period of the resonant electrons as they advance into 
the potential well of the wavelets. In units of nr1(£) 
we find that the correlation time a is given by 

2x 
1- tan9{L) 1R

   " h 
-1/2 

-1/2 
(56) 

where fx = wr/fte(£) is the frequency at the top of 
the hiss band and ij_ is defined in (47). Figure 10 rep- 
resents a x Ci~1(L) in seconds versus ß. for the three 
p = 0.2,0.3,0.4, as indicated. We see that the corre- 
lation time is a few tenths of a second and that it is 
smaller for larger values of p because the electric fields 
are larger for increasing electron energy as shown in Fig- 
ure 8. Experimental observations by Koons [1981] and 
Hattori et al. [1991] show that chorus emissions last for 
a few tenths of seconds, which roughly agrees with the 
correlation times Dresented here. 

7.   Summary and Conclusions 

We have presented a theory of chorus generation in 
the magnetosphere, according to which chorus is emit- 
ted by electrons trapped in wavelets propagating at the 
top of the hiss band. The distribution functions of 
the electrons develop step-like deformations near the 
boundary between resonant and nonresonant electrons 
owing to their linear interactions with the inner plasma 
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sheet kiss. The physical processes leading to chorus ra- 
diation and plateau formation are explained in Figure 4. 
The main results of our theory are described as follows. 

1. The electric field amplitudes of waves propagating 
at small angles to the magnetic field grow owing to their 
interactions with energetic electrons. This leads to the 
generation of resonant currents. 

2. Quasi-monochromatic waves packets (wavelets) 
whose frequency bandwidths are represented by Awi 
grow at the J;op of the hiss band. This is due to the lin- 
ear interactions with electrons whose distribution func- 
tions show step-like deformations. We have obtained 
analytical expressions for Ao/[ and the growth rates of 
the wavelets. We assume that a resonant electron in- 
teracts with different frequencies within the bandwidth 
of the wave packet, at different locations along the 
field lines to compensate for the magnetic field inho- 
mogeneities. Because of this, our estimates of growth 
rates are larger than those previously obtained by Nimn 
and Sazhin [1991] and Trakktengerts et cd. [1996]. 

3. As the wavelet electric fields increase, electrons be- 
come trapped. The electron distribution functions de- 
velop plateaus near the jump boundary in phase space, 
whose extent is proportional to the square roots of the 
electric fields. The plateau duration is approximately 
the time of phase correlation between the waves and 
the electrons. The relative phase angles between the 
electrons and the waves were obtained near the equator 
for trapped particles. 

4. Chorus emissions are triggered by wavelets and 
nonlinear resonant currents carried by trapped elec- 
trons. We show that their frequency spreads 5u are 
proportional to |£ij_1/2 a^d to the frequency band- 
width of the wavelet A«[. 

5. Thus the frequency dispersions come from two 
sources. The first is linear dispersion due to step-like 
distribution function, and the magnetic field inhomo- 
geneities that originate the wavelet bandwidth. The 
second source is nonlinear dispersion owing to plateau 
formation and trapped electrons, which originate cur- 
rents and the chorus frequency spread. 

6. Numerical calculations that apply to different 
magnetospheric regimes give the frequency of maximum 
growth and the frequency bandwidths of the wavelets as 
function of /?., i.e., the square of the inverse normalized 
magnetic energy per particle times the electron veloc- 
ity. The electric field amplitudes are obtained for the 
transition to the nonlinear trapping and chorus emis- 
sions. Further analysis, using measured energetic par- 
ticle fluxes to obtain actual chorus growth rates and 
frequency spreads, will be presented in a future paper. 

Appendix: Plateau Formation 
For a fixed position 5 along the field line, the dis- 

tribution functions / for resonant particles depend on 
time t, pitch angle p = sin2 8(L), and momentum p. 

For a fixed value of the electron energy, we assume that 
distribution functions show step—like deformations in 
the equatorial pitch angle for p = p., where p. is the 
boundary between resonant and nonresonant particles. 
By taking a Taylor expansion of the distribution func- 
tion for a fixed value of the electron momentum near 
the jump boundary, we write 

f(t,p,p) = f. + (^)ß=lt.  AM (57) 

where /. stands for f[t,^(p),p]. 

We define r = fle(I)i, f = x/4 - <£/2, and p2
c = 

2p/(C + p), and C is a constant. For particles that are 
near the boundary, \(h,9.) ~ 0, we rewrite (30) as 

dr 

2x 

a-pc 
[l-plsm'fr'3 (58) 

where 2iza~l = KV^ \/p{s). Here a is the bound oscil- 
lation time of the particle in the potential well of the 
wave normalized to fle(Z). It was already introduced 
in section 6 for the transition electric fields defined in 
(47). 

The solution of (58) is expressed in terms of elliptic 

functions as F&pc) = // dip [1 - p% sin^]"1'2, 

HZ*/*) ~ F[L,PC) r K-^l       (59) 
PC 

For trapped particles,  \pc\  >  1, and for untrapped, 
\pc\ < 1 [Budlto et al., 1972].   Thus if C < p, elec- 
trons may be trapped. 

We also show that 

(60) dr 
1 

= 4 "ii m 
Ul AM 

ne(£) i -p.. 

Combining (58) to (60), we obtain 

/ -/.    = ±4/V )1_M- 

&  dnl F(f. or-\ 
2TT 

-, pc] (61) 
Pc <rpc K    ' 

where /' denotes the derivative of / and dn[u, pc\ is 
the Jacobi elliptical function. The time average of the 
Jacobi function is for \pc\ < 1 (x/2) F(x/2,pc), the 
total elliptical integral of the first kind. For trapped 
particles, \pc\ > 1, the time average is zero, and then 
the first derivative of the distribution function is also 
zero near p. = p.. By imposing the condition of plateau 
formation on the distribution function, we obtain that 
the functions g^2 must satisfy 

9i{p-) ~ ?2(M) - AM [si(M-) + g'2(p..)] (62) 

for p. near p. and A/x < 1 as given in (48). 
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Abstract.    OEDIPUS C was a tethered mother-son experiment that was launched 

northward from the Poker Flat rocket range at 0638 UT on November 7, 1995, across a 

sequence of auroral structures. During the flight's upleg the magnetically-aligned tether 

was deployed to a separation of ~1.2 km then cut at both ends. The Forward payload 

contained a 50 kHz to 8 MHz stepped-frequency transmitter. Receivers were carried on 

both Forward and Aft payloads. The transmitter swept through the frequency range 

every 0.5 s.  During each of the 3 ms steps the transmitter emitted only for the first 

0.3 ms.  The scientific complement also included multiangular electrostatic analyzers 

on both payloads that were sensitive to fluxes of electrons with energies from 20 eV 

to 20 keV. The durations of sampling and frequency steps were matched. During the 

flight the electron gyrofrequency was approximately twice the plasma frequency. When 

the transmitter swept through the local gyrofrequency the particle detectors on both 

payloads detected sounder accelerated electrons (SAEs) independent of the energy steps 

being sampled. In addition, SAEs were detected at the Aft payload out to separations 

of several hundred meters for wave emissions at harmonics of the electron gyrofrequency 

as well as in the upper hybrid and whistler bands. As the vehicle separation increased, 

significant time differences developed between the wave-emission pulses and the 

onsets/durations of SAE detections. The data indicate that electrons are heated through 

strong wave-particle interactions.  However, a simple resonant-interaction explanation 

appears inadequate. We outline requirements for any model(s) purporting to explain 

OEDIPUS C measurements. 
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Introduction 

This paper presents the first example of bistatic measurements of sounder 

accelerated electrons (SAEs) detected during the OEDIPUS C (0-C) sounding rocket 

experiment flown in November 1995.   Previous rocket-borne experiments in which 

sounders were used to probe the ionospheric plasma were limited to low- to mid-latitudes, 

and only monostatic measurements were made.  In the Intercosmos 19 [Gal'perin et 

al, 1981; Serov et al, 1985; Shuiskaya et al, 1990] and ISIS I and II [James, 1983] 

experiments electrons were accelerated from a cold background to hundreds of eV, with 

a maximum of 1 keV being reported. At low altitudes where fpe > fce the Intercosmos 

19 experiments demonstrated that the sounder produced a wide variety of plasma 

modes interacting with measureable fluxes of energized electrons [Serov et al, 1985]. 

At higher altitudes where fpc < fce ISIS II reported energetic fluxes of electrons when 

the transmitted frequency ranged from fpe to fuh, where fuh = ^Jf^, + /c
2
e is the upper 

hybrid frequency, and a second maximum at 2 fce [James, 1983]. Figure 11 of James 

[1983] shows that the fluxes of electrons with energies ~300 eV peak at pitch angles 

near 90°. However, the peak fluxes of electrons with lesser energies are displaced from 

90° pitch angles. 

One purpose in active sounding experiments is to investigate the wave-particle 

interactions which result from sounder transmission.   By transmitting a signal at a 

known frequency and observing the effect on the ambient plasma we can establish cause 

and effect.   In naturally occurring wave-particle interactions this ambiguity cannot 

always be eliminated.   A secondary goal is to examine mechanisms for ionospheric 

heating for which sounders provide one means of energetic input. 

In this paper we report results obtained simultaneously from two particle detectors 

when a radio transmitter actively transmitted through a range of frequencies via 

crossed dipole antennas. One detector was co-located with the sounder on one payload. 

A second detector was located on a separate payload connected to the first by a 
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magnetically-aligned conducting tether. The separation distance between the payloads 

increased as the tether was extended. The only role played by the tether in our study 

is to maintain the two payloads along the magnetic field. We do not treat any of the 

results which arise from power put into the tether itself. Of particular interest to us is 

the response of the electron population surrounding the sounder when it was actively 

transmitting in certain frequency ranges.   We find that electrons were accelerated 

up to the maximum detectable energy of 20 keV when these frequency ranges were 

sounded. In addition we note several anomalies in the appearance, duration and pitch 

angle distribution in the sounder-accelerated electron (SAE) population which remain 

unexplained by current theory. 

Instrumentation and Experimental Background 

The O-C experiment was launched from the Poker Flat range (65.5° N, 212.5° E) 

in the premidnight sector at 0638:17.26 UT on November 7, 1995, aboard a Black Brant 

12 sounding rocket. The rocket's trajectory was almost due north, achieving an apogee 

of 824 km at 517 s time after launch (TAL). Scientific instruments were distributed 

between two platforms, referred to as Forward and Aft, that were separated by an 

electrically conducting tether that was closely aligned with the Earth's magnetic field 

B. Separation between the payloads was initiated at 174 s TAL by means of an argon 

gas thruster. The tether achieved full extension of 1173 m at 450 s TAL. It was cut at 

both ends at 623 s TAL. 

The Forward payload carried a digitally controlled radio transmitter called the high 

frequency exciter (HEX) whose signals could be fed into two pairs of 19 m tip to tip 

"V" shaped dipoles or into the tether [James and Calvert, 1998]. The "V" shape was 

adapted to produce linearly polarized fields in the antenna plane perpendicular to B. 

The antenna's output was divided into six repeating sequences, each of 0.5 s duration. 

The 3 s intervals required for the full sequence are referred to as major frames (MAF) 
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and the 0.5 s intervals as minor frames (MIF). Each emission sequence was divided into 

165 steps each of 3.03 ms duration. Emission sequences used during the upleg portion 

of the flight are listed in Table 1 and the modes of transmission are illustrated in Figure 

1. During the upleg part of the flight, sounder accelerated electrons were detected only 

while the dipoles were connected to the transmitter and SH3 sequences were exercised. 

From Table 1 it can be seen that this occurs on MIFs 2, 3, and 4, or 3 times during each 

major frame. We will restrict our discussion to these minor frames only. During SH3 

sequences input frequencies ranged from 25 kHz to 8 MHz in 160 steps, separated in 

frequency by 50 kHz. No power was fed into the dipoles during 5 of the SH3 steps early 

and at the end of the sequence. The total time taken to cycle through 165 steps is 0.5 s. 

During times when the HEX output is listed as 100 V, 10 W of power was fed into the 

dipoles. The modes in which power is fed into the tether are not discussed in this paper. 

A synchronized wave receiver called REX, located on the Aft payload, monitored the 

transmission characteristics of waves emitted from HEX [James and Calvert, 1998]. 

Two energetic particle instruments (EPI) were placed on the Forward (EPI-F) and 

Aft (EPI-A) payloads. They consisted of triquadraspherical electrostatic analyzers with 

fields of view of 140° x 8°. This acceptance fan was divided into eight zones of 17.5° 

x 8°. Figure 2 shows that the sensors were placed so that zone 2 for Forward and Aft 

payloads looked down and up along B, respectively. Zone 7 of both EPIs looked nearly 

perpendicular to B.  To clarify the following discussion we will use the zone numbers 

(1 through 8) and central look angle relative to the magnetic field, i.e. pitch angle as 

follows: zone 1 (-17.5°), zone 2 (0°), etc. up to zone 7(87.5°), zone 8 (105°) with the 

understanding that the acceptance angle of each zone is 17.5° and the angle after each 

zone number refers to the central angle of each zone.   The EPIs covered the energy 

range 10 eV to 20 keV in 32 logarithmically spaced increments, with AE/E « 10% and 

a geometric factor of 5 x 10~2. Full energy spectra for each of the zones were compiled 

at a rate of 10 s-1. 

71 



In Figure 3 we show a schematic illustrating operation of the HEX transmitter and 

the EPI during a single major frame. The 3 s interval is divided into 6 minor frames 

each of which lasts 0.5 s which is the time necessary to complete a single sweep of each 

of the frequency steps. These frequency sweeps are labelled SH 3, SH 4, and FF, details 

of which are given in Table 1.  The EPI sweeps through its 32 energy steps, each of 

duration 3.03 ms in 0.1 s. Thus in Figure 3 the EPI sweep is represented by a sawtooth 

wave. The cycle times of the transmitter and the EPI are slightly different.  This is 

represented by a small displacement in the EPI sweep relative to the HEX minor frame. 

The lower part of Figure 3 shows the relative stepping sequences for the two 

instruments.  The transmitter steps actually consist of a series of pulses which have 

an active interval of 300 fis followed by a passive interval of 2.7 ms before stepping 

up to the next frequency. Note that the displacement of the EPI cycle relative to the 

HEX sounder means that as each set of frequencies is repeated the EPI is detecting a 

different energy. Part of the argument we make is that although electrons of all energies 

are accelerated when specific frequencies are sounded, the nature of the instrument 

operation allows us to observe only those electrons corresponding to the particular 

energy step sampled by the EPI at that time. 

To avoid internal arcing the high voltage supplies of the EPIs were turned on 

at ~200 s TAL. In parallel with normal counting, the EPIs further process data in 

two ways:   0-8 MHz electron autocorrelation functions (ACFs) and sub-millisecond 

superposed epoch analysis of the energy (frequency) steps.  For the autocorrelations, 

times between electron arrivals are measured in units of a clock running at 16 MHz. 

Using a buncher technique, histograms of time separations between electron detections 

are accumulated for each of the 32 energy levels sampled by the EPIs [Gough 1980; 

Gough et al, 1995].  The histograms are equivalent to the summation of many one-bit 

ACFs.   Normally electron counts are accumulated by the EPI for the full 3.03 ms 

duration of an energy step to determine individual spectra (directional differential 
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fluxes). An alternative method to analyze electron fluxes involves using the correlator 

capability of the sensor to determine the arrival times of individual electrons into 

adjacent pairs of sensors (zones 1 and 2, 3 and 4, 5 and 6, 7 and 8). Summed time series 

of counts for two frequency emission steps are presented as superposed epochs relative 

to the initial time of the frequency pulses by the HEX transmitter. In these cases the 

temporal resolution or accumulation period is 90 fis. 

It should be noted that we are not using the correlator technique to find resonant 

wave frequencies as was done for the Tethered Satellite System missions [Gough et al., 

1995].  We use the correlator only to give us a high-time-resolution breakdown of the 

3.03 ms cycle time of the EPI. We have checked the output of the ACFs and compared 

the counting levels with the fluxes returned directly from the EPI, and after making 

the conversion necessary for the summed pitch angles and times, we arrive at identical 

numbers. 

At the time of the O-C launch, a series of bright auroral arcs was located to the 

north of Poker Flat.  By the time of EPI turn on, the payloads were at an altitude 

of ~440 km and approaching field lines connected to the most equatorward auroral 

arc.  The top plot of Figure 4 provides the electron cyclotron fce and the plasma fpe 

frequencies plotted as functions of time for the upleg portion of the flight.  The IGRF 

1995 model of the Earth's magnetic field was used to calculate fce at the spacecraft 

locations.   Values of fpe were determined from X and Z mode cutoffs observed in 

ionograms measured at the Aft payload [James and Calvert, 1998]. The plots in Figure 

4 show that: (1) fce smoothly decreased with altitude from 1.32 to 1.12 MHz between 

200 and 500 s TAL, and (2) fpe decreased from 0.7 MHz at 200 s to 0.6 MHz at 240 

s.  After that it decreased rapidly to <0.2 MHz.  The bottom plot of Figure 4 gives 

the length of the tether and the spacecraft altitude as functions of time. The shaded 

areas in the figure between 200 and 260 s TAL mark the approximate duration of SAE 

detections by EPI-A. 
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Observations 

Plate 1 shows the uncorrected counts from zones 4 (35°) and 7 (87.5°) of the 

electrostatic analyzer on the Forward payload for the interval from 200-260 s after 

launch. The background auroral electrons can be seen in both zones but are more readily 

apparent in zone 7 (87.5°) which detects the backscattered or reflected population with 

large (~90°) pitch angles. The SAEs appear in sets of three corresponding to the minor 

frames 2, 3, and 4 when the transmitter is in swept frequency mode and the dipole 

antenna is connected as mentioned in the preceding section (see Table 1). 

There are differences between the responses in zone 4 which detects electrons 

arriving with pitch angles of 35° ±9° and zone 7 which is approximately perpendicular 

to the magnetic field.  The response level in zone 4 is higher than that in zone 7. We 

have taken into account the difference in sensitivity when generating distributions and 

fluxes from the raw counts. The SAEs in zone 4 (35°) appear at all energies. This can be 

seen as sets of three pulses that appear at steadily decreasing energies until the lowest 

values are reached and the sequence begins again at the highest energies. An example 

of such a transition can be seen around 221 s. In contrast the SAEs in zone 7 (87.5°) 

are restricted to the lower energies. As the SAEs are detected at decreasing energies up 

to ~239 s, the corresponding transition to the highest energies does not occur until the 

end of the sequence shown in Plate 1. 

On the Forward payload the strongest signal occurs at the electron gyrofrequency 

fce when the HEX radio transmitter sweeps through this part of its range and the dipole 

antenna is connected. For brevity we do not show results from the Aft payload which 

are qualitatively similar to those of Plate 1. The main difference is an overall increase 

in counting rate. The auroral electrons are detected most intensely in zone 2 (0°) which 

looks up the magnetic field, and weakly at large pitch angles. 

The sets of 3 pulses seen in Plate 1 correspond to the times when the electron 

gyrofrequency is transmitted by the HEX in each of the 3 minor frames 2, 3 and 4. It 
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is difficult to separate the gyrofrequency from the upper hybrid resonance frequency as 

fp<< fee (see Figure 4), but as higher order resonant frequencies are detected at weak 

levels, we assume these to be higher-order harmonics of fce. 

On the Forward payload which is co-located with the HEX transmitter, transmission 

from the antenna at the electron gyrofrequency caused electron acceleration throughout 

the duration of the rocket flight. This contrasts with the Aft payload which was ~150 

to 575 m distant from the transmitter during the 200-260 s interval under discussion. 

SAEs at the gyrofrequency and higher harmonics are observed on the Aft payload for 

the first 60 s of flight but were not detectable after 260 s TAL until shortly before 

re-entry when a large array of wave emissions is detected. 

A second emission is observed at the Aft payload which is not apparent on the 

Forward payload.   This occurs at ~0.2 to 0.7 MHz.  We refer to these emissions as 

the whistler band [Stix, 1962] based on the frequency relative to the natural gyro- 

and plasma frequencies.   This emission is only observed for the same 60 s as the 

gyrofrequency emissions on the Aft payload [James et al., 1999]. 

The electron analyzer data can be displayed at higher time resolution provided by 

the superposed epoch time analysis [Gough et al, 1995].  The accumulated counts for 

adjacent zones are combined so that zones 1 and 2 (±17.5°), 3 and 4 (17.5° and 35°), 

5 and 6 (52.5° and 70°), 7 and 8 (87.5° and 105°) are summed in pairs and the results 

plotted for the 3.03 ms required for a single electron analyzer energy step. In Figure 5A 

we show the raw counts versus lag times for the summed counts in zones 3 (17.5°) and 4 

(35°) for energy 28 - 36 eV and when the transmitted frequency is 1.275 - 1.325 MHz. 

These data are observed on the Forward payload. The time is 239 s TAL, minor frame 

2. Recall that individual HEX transmitter steps during this emission sequence (SH 3 - 

see Figure 3) last 3 ms with the transmitter active for 0.3 ms and passive for 2.7 ms. 

This plot shows arrival of electrons in a narrow energy band during the 3 ms duration 

of the HEX pulse. No other energies are excited and no heated electrons are observed 
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at any other transmitted frequency. 

In Figure 5 individual lag intervals are of 90 /AS duration. The pulse width of the 

enhanced electron counts lasts 4 lag intervals, or ~360 /AS.   This corresponds to the 

time that the transmitter is active. Note that there is no time delay between the start 

of transmission and observation of enhanced electron counts.   Simultaneous with the 

observation of high electron counts at intermediate pitch angles (17.5° - 35°), the EPI 

detects electrons in all other zones, from 1 (-17.5°) through 8 (105°), at the same energy 

(28 - 36 eV) and corresponding to the same transmitted frequency (1.275 - 1.325 MHz). 

This example is typical of the measurements made on the Forward payload with 

one significant exception. In Figure 5A the electrons are in the 28 - 36 eV energy range. 

At energies <200 eV enhanced counts are observed at all pitch angles.  Above 200 eV 

only electrons at intermediate pitch angles from 18 - 82°, corresponding to zones 3-6, 

are observed at enhanced counting levels. However at these intermediate pitch angles, 

we detect SAEs through the entire energy range. These features are discussed in more 

detail when we present the distribution functions for the SAEs. 

In Figure 5B we show count rates from the Aft payload versus lag times for the 

summed counts in zones 3 and 4 (17.5° - 35°), energy = 400 - 500 eV, transmitted 

frequency = 1.325 - 1.375 MHz.  The time is again 239 s TAL (L « 400 m), minor 

frame 2, the same time as is shown in Figure 5A for the Forward payload.  The SAEs 

observed on the Aft payload show several distinct differences. (1) There is a noticeable 

time lag between the start of HEX transmission in this frequency range and the first 

appearance of significant count rates above the auroral background, ~270 /AS.   This 

time delay increases with tether length, or equivalently, with distance from the HEX 

transmitter on the Forward payload. (2) The peak count rates also remain elevated for 

a longer time than on the Forward payload. At this time the SAE pulse duration lasts 

about 6 lag intervals or 540 /AS. Note that the HEX transmitter is off from 300 /AS into 

the sweep, so these high electron counts are mostly detected after the transmitter is 

76 



11 

turned off. (3) The count rates decline more gradually, going through an interval lasting 

~300 (is during which count rates decrease below the maximum but remain above the 

auroral background. (4) The background count rates are ~20% of the peak values. In 

comparison the background on the Forward payload is < 10% of the peak rate. 

Other features of the SAEs observed on the Aft payload are identical with those 

seen on the Forward payload, i.e. the enhanced electron counts are in the same energy 

range over all pitch angles when the electon energy is <200 eV. At higher energies SAEs 

are confined to intermediate pitch angles (18° - 70°). 

Note that one significant difference between the simultaneous observations of 

enhanced counts on the separated payloads is the energy of the electrons which interact 

with the transmitted wave. On the Forward payload the SAE energy is 28 - 36 eV, while 

at the Aft payload it is 400 - 500 eV. The EPIs on the payloads are not synchronized. 

This difference illustrates an important result: whenever the transmitted frequency is at 

the electron gyrofrequency (~1.3 MHz) ambient electrons at all energies are accelerated. 

The acceleration in the near-field region is immediate and coincides precisely with the 

duration of the transmitted signal. At the distant payload, the first detection of SAEs 

depends on the distance from the transmitter, and the duration of the SAEs far exceeds 

the time over which power is applied to the sounder. 

In Figure 5C the low-frequency SAEs observed on the Aft payload are shown. 

These also occur at 239 TAL, minor frame 2, but at a different part of the frequency 

sweep. The HEX transmitter frequency at this time is 425-475 kHz, and the electron 

energy is 1.5 - 1.8 keV. The counts rise after 1 lag interval and remain elevated for 5 

periods, or 450 [is.  The decrease in count rate is sharper than for the gyrofrequency 

emission on the Aft payload shown in Figure 5B but less precipitous than the Forward 

payload SAEs shown in Figure 5A. The background in Figure 5C is also intermediate 

between that of Figures 5A and 5B. As in the gyrofrequency SAEs the whistler SAEs are 

observed whenever the frequency is in the appropriate range, regardless of the electron 
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energy.  The pitch angle range is also related to electron energy with all pitch angles 

observed below 70 eV, and only at the intermediate pitch angles above this energy. 

The Liouville theorem suggests a means for estimating the amount by which 

electrons were accelerated through their interactions with HEX emissions in the whistler 

and/or upper hybrid frequency bands. In its simplest form the Liouville theorem states 

that for an ensemble of particles their phase space densities (distribution functions) 

remain constant along dynamical trajectories.   For distributions of electrons in the 

ionosphere this is equivalent to saying that they obey the collisionless Boltzmann 

equation. In the case at hand, it is necessary to determine the distribution function of 

the SAEs and the auroral electron population from which they were accelerated. This is 

not an easy task. As seen above, encounters with SAEs are discrete events subject to 

the beating between the EPI energy and the HEX emission cycles. Also, data indicate 

that during the interval 200 - 260 s TAL, background auroral electron fluxes were 

quite variable.  Subsequent paragraphs summarize results of our efforts to describe the 

distribution functions of both the auroral and SAE populations. 

Figures 6A and 6B provide representative examples of electron distribution 

functions f(E) plotted as functions of energy.   They were measured by EPI-F at 239 

s TAL and EPI-A at 227 s TAL at pitch angles of 0°, 35°, and 87.5° to the Earth's 

magnetic field.   Both of these distribution functions were acquired while HEX was 

operating in the SH3 mode feeding energy to the dipoles.   For convenience in our 

description of the data we somewhat arbitrarily divide the distribution function into two 

parts, referring to electrons with E > 1 keV as auroral primaries and those with E < 1 

keV as auroral secondaries. The secondary population is composed of energy-degraded 

and backscattered primaries as well as energetic electrons created in ionizing collisions. 

From the plots in Figure 6 three empirical points may be made: (1) The primary auroral 

distribution function did not decrease monotonically with energy.  A peak in f(E) was 

detected by EPI-F at£« 4.2 keV and pitch angles near 90° (zone 7). At this energy 
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f7(E) was a full order of magnitude higher than that of backscattered electrons, f2(E). 

A peak in f(E) at ~3 keV, measured by EPI-A at 227s TAL, was isotropic over the 

downcoming hemisphere. (2) EPI-F measured peaks in f(E) for the secondary electron 

populations between 25 and 40 eV. Likewise, EPI-A detected peaks in f(E) and near 

400 eV by EPI-A. These are examples of SAE events excited as HEX swept through 

the upper hybrid and whistler frequency bands.   (3) The SAE distribution function 

measured by EPI-F increased more at 90° pitch angles than at intermediate pitch angles, 

which increased more than at a pitch angle of 0°. A similar feature appears at 400 eV 

in EPI-A measurements. However, at EPI-A the next two energy steps show the largest 

increase at intermediate pitch angles. These observations suggest that the acceleration 

is exerted perpendicular to B rather than along it. 

To estimate the electron acceleration, we have superposed straight lines on Figures 

6A and 6B that approximate the unperturbed distributions of the secondary electrons 

as isotropic and following a power law over the energy range 10 eV < E < 300 eV. The 

secondary distribution function is represented as 

10 " 
f(E) = 2 x 10 -24 

.E 

where f(E) is in s3/cm6 and E in eV. For the energy range 300 eV < E < 20 keV the 

primary auroral distribution can be represented as 

"300  " 

(1) 

f(E) = 1 x 10 -28 

L E J (2) 

where f(E) is in s3/cm6 and E is in eV. 

Figure 7 presents all SAE distribution functions observed by EPI-F between 200 and 

260 s TAL calculated using high-time resolution count rates available through the EPI 

correlator function. Data points represent sums over two adjacent EPI zones and energy 

steps acquired in ~90 fis.   To calculate fi,j(E) we approximated effective geometric 

factors and central energies as geometric means [JXiXj) of values determined prior to 
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flight. In some cases EPI sampled the same zone/energy step pairs twice during the 60 s 

interval of interest. Data in Figure 7 show that (1) SAEs were detected in zone pairs at 

0° and 90° pitch angles only at electron energies < 60 eV and 400 eV, respectively. (2) 

Statistically, for E < 400 eV, faAE) (~26° pitch angle) had the highest values. Note 

that for E > 400 eV, symbols representing f5,6(E) (~6P pitch angle) in Figure 7 overlay 

and hide those representing fz,i{E) (~26° pitch angle). In fact, fzti(E) ra fs,e(E). (3) 

To a good approximation, /3)4(.E) can be represented as following power laws with 

spectral indices of -3 and -2 at energies below and above 300 eV, respectively.  For 

reference, Figure 7 also shows the approximated auroral electron distributions as in 

Figure 5A measured by EPI-F at 239 s. A comparison of the measurements shows that 

fi{E) roughly parallels f3,4{E). This suggests that the energy gained by an electron AE 

in an encounter with a HEX wave emission is nearly proportional to its initial energy. 

All SAE measurements made by EPI-A during times when HEX was emitting in the 

upper hybrid and whistler frequency bands are given in Figures 8A and 8B, respectively. 

Again, distribution functions were derived from count rates acquired using the EPI 

correlator function. Many of the features found in the EPI-F measurements also appear 

in Figure 8. From 300 eV to 20 keV the distributions can be approximated as f(E) a 

il2 

gj  .  The intercept varies slightly between frequency ranges.  In addition to the fact 

that whistler band emissions accelerated electrons reaching the Aft but not the Forward 

payload, the main differences between data in Figures 7 and 8 are:  (1) signatures of 

fit2(E) at 0° pitch angle are discernible in Figure 8A out to energies of ~450 eV, (2) at 

any given energy, the distribution functions of SAEs reaching EPI-A are systematically 

lower than those observed by EPI-F, and (3) the acceleration observed at the Forward 

payload is more uniform over the observed energy range than that at the Aft payload. 

Table 2 presents examples of the SAE energies recorded during HEX transmissions. 

The effect at the Forward payload where the transmitter is located is dramatic. The 10 

W output from the transmitter accelerates electrons up to a factor of 5 in energy as the 
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upper hybrid band is swept.  At the Aft payload acceleration in the upper hybrid and 

whistler bands is less marked. Electrons are energized up to 3 times their initial energy 

at higher initial energies. At the Aft payload the energized electrons persist for several 

microseconds after the transmitter is turned off. 

From the SAE distributions shown in Figures 7 and 8 it appears that the 

precipitating auroral electrons which peak at 3 - 5 keV have been smoothed out. The 

SAEs show no maxima over this energy range and no appreciable pitch-angle anisotropy. 

Counts are significant at intermediate pitch angles of 9° - 70°, but peak primarily at 

45° to the magnetic field. The SAE spectra are obtained over the complete 60 s interval 

from 200 - 260 s TAL which includes the background auroral distributions shown in 

Figure 6. As can be seen in Plate 1 there is a continuous source of precipitating electrons 

during this interval. 

Summary and Discussion 

The operation of the 10 W HEX transmitter had significant effects on the ambient 

electrons as the paired dipole antennas swept in frequency. At the Forward payload 

electron acceleration occurred across the upper hybrid frequency band regardless of the 

initial energy of the electrons. Further, electrons were accelerated at all energies in such 

a way that, except for auroral electron peaks, the initial spectral shape was preserved. 

At the Aft payload accelerated electrons were detected when the HEX swept through 

the whistler and upper hybrid frequency bands. Occasionally acceleration effects were 

also seen at harmonics of the electron frequency.  The degree of electron acceleration 

increased with the inital energy from ~50% at 50 eV to a factor of 3 at 1 keV. Unlike 

the Forward payload where SAEs were detected only while the transmitter was on, at 

the Aft payload SAEs were observed after a brief delay and persisted for a short interval 

after the transmitter turned off. These effects became more pronounced as the tether 

length increased. 
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It should be remembered that our estimates of the SAE distribution function 

assume that the raw count rate is evenly divided between adjacent detector zones with 

total acceptance angle of 35° and combined energy levels. The actual count rates may 

be higher than our conservative estimates.  The distribution functions for the SAEs 

are smoothly fitted by power law expressions.  Maxima or minima in the background 

auroral distribution are smoothed out. In addition pitch angle anisotropies as shown in 

Figure 6A and 6B seem to be erased. Other than the averaging effect of the sum over 

adjacent energy steps and detector zones no processing of the data has been carried 

out. Flux levels of the SAEs are higher at the Forward payload. Apart from this, there 

are few differences between the SAE distributions measured on the separate payloads or 

between the high- and low-frequency SAEs. 

Prior detections of SAEs were made at lower latitudes and involved acceleration 

of cold ionospheric plasma [James et al, 1999]. By launching into a quiet auroral arc 

the O-C experiment experienced a background superthermal population superimposed 

on the cold ambient ionosphere. In a previous study of SAEs observed on the ISIS II 

satellite at 1400 km and subauroral latitudes the results were similar to ours [James, 

1983]. Electrons were observed to be accelerated as the transmitter swept through the 

gyrofrequency and its harmonics. However, the maximum energy was a few hundred eV, 

and it was postulated that this was caused by the induced spacecraft potential. While a 

potential may be induced around the spacecraft it is difficult to reconcile this with the 

observation of electron correlations only when the HEX transmitter is sweeping through 

the upper hybrid and whistler bands. 

Previous measurements have shown that spacecraft crossing intense auroral electron 

fluxes in darkness with low background plasma densities charge negatively [Gussenhoven 

et al, 1985]. Thus if the Aft payload charged, it would be negatively charged, decreasing 

rather than increasing the flux of electrons reaching EPI-A. We conclude that the 

observed SAEs must result from strong interactions between the local auroral electron 
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population and certain HEX emitted waves. 

To investigate the nature of the acceleration process it is useful to fit the observed 

directional differential flux J ((cm3 s sr eV)"1) using kappa functions [Vasyliunas, 1968]. 

J for the background auroral electrons observed at the Aft payload at 227 s is shown 

in Figure 9A. These data correspond to the distribution function plotted in Figure 6B 

except that 7 zones are shown in Figure 9. Also shown in Figure 9A are four possible 

functional fits. In each case the density has been kept constant such that / f(v)d3v = N, 

the measured electron density at this time. It can be seen that the auroral electrons are 

not well described by a Maxwellian with an assumed temperature of 0.1 eV. The best 

fit is given by a combination of two kappa functions, one at lower energy (10 eV < E < 

1 keV) with K = 2 and a temperature of 0.1-0.2 eV and one at high energy (1 keV < E 

< 20 keV) with K = 3. 

In Figure 9B we show the SAE directional differential flux corresponding to the 

distribution shown in Figure 8B. As we have noted above, the SAE fluxes in the two 

frequency bands observed on the Aft payload and the SAEs observed on the Forward 

payload are all quite similar, so the data shown in Figure 9B are representative of all 

three sets of SAE observations.   The functional fits from Figure 9A are repeated in 

Figure 9B. The change in the differential flux shows the effect of the sounder on the 

initial electron population. The final flux is not a simple heating of the initial population 

which would appear as a translation of the initial fitted curves to higher energies. The 

lower-energy portion of the curve is best fitted by a K = 2 fit with a temperature of 1 

eV. However the higher energy portion (E > 300 eV) shows an increase in flux levels 

indicating that electrons from the low-energy part of the range have been accelerated 

into this energy range. This appears as a hardening of the spectrum as also noted in 

Figures 7 and 8 and Table 2. It can also be seen that the transition between the two 

kappa distributions now occurs at ~300 eV compared with ~1 keV for the unaccelerated 

electrons. 
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The main purpose of this paper has been to report EPI measurements during 

SAE detections.   Although providing theoretical explanations of the OEDIPUS C 

measurements is well beyond its scope, some comments on model requirements for 

such explanations seem appropriate.   We have already concluded that accelerated 

electrons observed during sounder operations result from wave-particle rather than 

vehicle-particle interactions. It is clear, however, that the acceleration does not proceed 

from simple resonant interactions.   No particular initial electron velocity component 

along the magnetic field was preferentially selected as required to satisfy a resonance 

condition 

w - A||V|| -f nVtce = 0 

The standard notation is used w = 2irf, fice = 2irfce, k^ is the component of the wave 

vector along B and n is an integer.  Rather, acceleration occurs over a wide range of 

energies and pitch angles.   At intermediate pitch angles (zones 3-6, corresponding to 

pitch angle 18°-70°) SAEs were observed at both payloads up to the maximum energy 

of 20 keV. This would not be predicted in standard linear wave-particle theory.   A 

theoretical study of the whistler mode wave-particle interaction was carried out by 

James et al. [1999]. They show that while acceleration over the entire energy range can 

be demonstrated the maximum increase in energy at high energies (E > 1 keV) is a few 

hundred eV, not the several keV observed (see Table 2). 

The second requirement is that the model utilize a finite heating region.   SAEs 

were not detected at the Aft payload after 260 s TAL but continued at the Forward 

payload throughout the flight. This indicates that magnetic connection between finite 

acceleration volumes and the Aft payload was lost.  Since the disconnection occurred 

at about the same time for both whistler and upper hybrid bands, the magnetic cross 

sections of the heated regions are comparable. Without better information concerning 

the cross magnetic field separation between the two payloads, it is impossible to specify 

the exact dimensions of the acceleration volume.  If the nominal separation of a few 
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meters is correct, then the cross section of the interaction region was on the order of an 

auroral electron gyrodiameter. 

A third requirement of a physical model is that it be able to explain the observed 

acceleration of electrons both up and down magnetic field lines whenever the HEX swept 

through the upper hybrid band.  Clearly such a model would include the low density 

conditions prevailing during the actual flight of OEDIPUS C. For verification purposes, 

the model should be adapted to predict plasma responses when fpe > fce. 

Finally a complete model must also explain the detection of intense SAEs at the 

Aft payload but relatively weak SAEs on the Forward payload during HEX emissions 

at whistler band frequencies. What is the nature of the acceleration interaction? The 

electric fields of whistler-mode waves are perpendicular to the magnetic field. Why is 

it that SAEs with the highest energies, detected at pitch angles from 17.5° - 70°, have 

large velocity components along B? 

The results of the OEDIPUS C experiment show that relatively low-power 

transmitters emitting in sweep-frequency modes can accelerate ambient electrons 

to high energies.   This effect has now been observed at a wide range of spacecraft 

altitudes and magnetic latitudes. Direct wave injection has promise as a highly efficient 

method for studying the electrodynamics of local ionospheric heating in spatially 

limited electromagnetic fields.  It can be speculated that the acceleration process is 

intimately related to the near-field effects around the crossed dipole antenna during 

HEX transmissions.  We would expect large localized electric fields to be generated in 

some complex pattern in the vicinity of the antenna which could accelerate ambient 

electrons to high energies.  Without a detailed study of the electric field generated by 

the antenna we cannot pursue this speculation further. 
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Table 1. HEX Operations during OEDIPUS C Upleg 

MIF Time Mode Voltage Dipole Tether 

1 0.0 - 0.5 SH3 2.51V grounded connected 

2 0.5 - 1.0 SH3 100 V connected grounded 

3 1.0- 1.5 SH3 100 V connected grounded 

4 1.5-2.0 SH3 100 V connected grounded 

5 2.0-2.5 SH4 2.51V grounded connected 

6 2.5 - 3.0 FF 100 V connected grounded 
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Table 2. SAE energies recorded during HEX transmissions 

Ei E, Forward E, Aft, HF E, Aft, LF 

1 50 eV 160 eV 76 eV 71 eV 

2 100 eV 340 eV 170 eV 170 eV 

3 1000 eV 5500 eV 3400 eV 2900 ev 
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Abstract. 

Radiowave propagation and plasma heating are investigated for ionospheric plasmas under 

conditions such that the ratio between the plasma and gyrofrequencies Q = wp/Cle < 1. The situation 

is of interest to in situ rocket experiments, whereby the electric energy of the quasi-electrostatic wave 

fields is generally larger than the plasma kinetic energy and the non-linearity can modify the plasma 

density.  The quasi-electrostatic W- and Z-modes are studied by including thermal corrections for 

frequencies near or below the unperturbed up and within the range Qe through the upper hybrid wUH, 

respectively.  The refractive indices vary rapidly with the wave normal angles and with the plasma 

frequency which changes its value due to the ponderomotive force.  Thus, there can exist a large 

number of eigenmodes which cannot be explained by the linear theory and whose frequencies fall within 

propagation regions of the linear W- and Z- plasma waves. These eigenmodes which are generated in 

density gradients and for all possible propagation angles, can efficiently interact with a wide range of 

electron energies and pitch angles. The isotropic distributions of secondary electrons (< 500 eV) absorb 

their electric energy through Doppler-shifted resonant interactions at some harmonic of fi,. 
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1.   Introduction 

Radio wave propagation and plasma heating are two intricately connected plasma problems of 

great interest to ionospheric and magnetospheric research.  Here we address these problems for an 

auroral ionospheric plasma of low background plasma density. In fact if wv and ile are respectively the 

electron plasma and gyrofrequencies, then we assume all through this paper that Q = wp/fie < 1- Our 

research is partially motivated by certain experimental observations of the Oedipus C (OC) sounding 

rocket Huang et al. [1999]. We are interested in studying the resonant plasma eigenmodes which might 

be responsible for the acceleration of the electrons. In addition, we investigate the linear and non-linear 

theories that may explain the electron acceleration. 

Briefly, the OC rocket consisted of double subpayloads which were formed by the transmitter 

and receiver, and whose antennas were aligned along the geomagnetic field. The unperturbed plasma 

frequency wv fell monotonically from 0.6 to 0.1 MHz, and the gyrofrequency went from 1.1 to 1.3 MHz. 

The OC sounder emits RF pulses with a repetition rate of at least 300 fis, over the frequency range 

of 25 kHz to 8 MHz. The electric fields were > 20 V/m within short distances near the transmitter. 

The energetic particle instruments placed on the forward and aft subpayloads covered the energy range 

from 10 eV to 20 keV and measured pitch angles over a wide range -of directions with respect to the 

geomagnetic field. Sounder accelerated electrons (SAE's) are fluxes of electrons which were accelerated 

by the electromagnetic energy of the RF pulses. As a matter of fact, SAE's get energized through the 

absorption of wave energy from the slowly propagating sounder-stimulated resonant plasma modes. 

This is because when the transmitter emitted frequencies that were near the major electron resonant 

frequencies, the RF pulses were capable of stimulating the resonant plasma waves. The radiated electric 

fields of the quasi-electrostatic waves interact efficently with the electrons, which remain energized for 

several milliseconds even after the end of the pulse. 

Under the cold plasma approximation a wave of frequency w and wave vector k becomes quasi- 

electrostatic if the refractive index r\ — ck/u —> oo Oya [1971]. The slowly propagating quasi-electrostaic 

modes can interact very efficiently with the electrons and accelerate them.  The frequencies of these 
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waves and their propagation characteristics, differ depending on the value of the plasma parameter 

Q = ujp/Qe. < 1 [Stix, 1992]. As a matter of fact the observations for ionospheric experiments such as in 

ISIS [James, 1983] and others [Oya, 1970; Benson, 1982] differ on the values of the plasma frequency. 

Because plasma wave resonances are determined by the values of Q, SAE's are critically dependent on 

the parameters Q and.P = w/Qe as shown by Serov et al. [1985] and by Shuiskaya et al. [1990]. 

The OC observations for electron acceleration took place when the sounder emitted frequencies 

within the range of propagation of the quasi-electrostatic W- and Z- plasma eigenmodes [Budden 1985]. 

Therefore for the Z-mode waves whose frequencies are near fle 
aQd the upper hybrid frequency U>XJH, 

the electrons were accelerated over a large range of energies and pitch angles. In addition, acceleration 

by the W-mode waves at the subcyclotron frequencies w < cop < fie, was observed only in the aft 

subpayload over a broad range extending a large fraction of a megahertz. There exists a minimum 

value of (jp ~ 0.4 ile, below which SAE's observations were not detected.  Fundamentally, the eletron 

distributions in the auroral plasma are formed by two different populations [Lyons and Williams, 1984]: 

(i) the low energy (< 500 eV) secondary isotropic electrons, and (ii) the more energetic (from 1 up to 20 

KeV) less populated primary electron distribution which might be anisotropic in pitch-angle [Arnoldy 

et al., 1974]. In this paper we investigate secondary electrons acceleration which, according to the 

observations, gain an approximately constant fraction of their initial kinetic energy when interacting 

with the wave fields. 

The paper is organized as follows: Section 2 contains the cold plasma Appleton-Hartree dispersion 

relation, and the frequencies of propagation are calculated for quasi-electrostatic waves as functions of 

the parameter Q = ü>p/ße and the angle 6 between the wave vector k and geomagnetic field B„. In 

Section 3, we include first-order thermal corrections to the equations describing the quasi-electrostatic 

W- and Z-eigenmodes as done by Aubry et al. [1970], Sazhin [1993] and by Villalon [1989]. Because 

of the large electric fields we devote Section 4 to the study of the ponderomotive force, its effects on 

the background plasma density [Al'pert, 1983] and on the generation of other eigenmodes.  Section 

5 describes the heating of secondary electrons due to resonant interactions with a large number of 
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the quasi-electrostatic eigenmodes.  Section 6 presents numerical calculations for wave propagation 

considering the thermal corrections and for the heating of secondary electrons. Section 7 contains the 

summary and discussion. 

2.   The Cold Plasma Equations 

Let us consider a magnetized plasma with the z-axis which is vertically upwards and oppositely 

directed to the geomagnetic field B0. A wave of frequency u and wave vector Ä; propagates in the plane 

x — z, at an angle 6 with respect to z. The group velocity which is in the direction of the ray forms 

an angle ß with respect to z, and a is the angle between the ray and wave normal; see Fig. 1 for the 

geometrical details. The wave propagates in a cold magnetized plasma, where the thermal speed VTH 

is very small, i. e. VTH/C <C 1, and the density of the cold plasma is such that Q = wp/fie < 1- The 

refractive index rj = ck/u, is described by the Appleton-Hartree dispersion relation 

A0 rj
4 - BCT)2 + Cc = 0 (1) 

For a cold plasma A0 = Ac and the other coefficients Bc, and Ce, are 

1 - Y2 cos2 6 
Ac    =    1 - X i-r2 

Bc    =    —^ [2(1 - X)2 - 2Y2 + XY2 (cos2 9 + 1)] 

C*    =    l^(l + Y-X)(l-Y-X) (2) 

where X = (wp/w)2.   Let us define the unit vector b0 = B0/2?0, then Y = —b„ fle/u; is in the 

direction of z and Qe > 0 is the electron cyclotron frequency. We may approximate the solutions to 

(1) as the electromagnetic wave with rj2 — CcfBc ~ 1, and the quasi-electrostatic plasma wave with 

rj2 = Bc/Ac —* oo. Here we study the latter case, r\ 3> 1, for which we must require that Ac —* 0. The 

quasi-electrostatic waves have frequencies which are given as functions of Q = X1!2 /Y and the angle 0 

by solving for Ac = 0 as Budden [1985] 

<£>--b + fl">*i (l + <? 
2\2 AQ2 

tan2 0 + 1 
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The ordinary and extraordinary plasma resonances correspond to the - and + signs in (3), and they 

fall within the regions of propagation for the W- and Z-modes, respectively. The W- and Z-eigenmodes 

have frequencies whose extent are 0 < w < uiP, and wUH > w > fie, which correspond to angles of 

propagation 0 < cos20 < 1, respectively.  Here wUH = (w2 + n2)1/2 is the upper hybrid frequency, 

which for Q < 2/3 is close to fle. Figure 2 depicts curves for the ordinary and extraordinary modes 

branches as related to the W- and Z-mode propagation regions, by assuming Q = wp/üe — 0.66. 

The extraordinary modes propagate beyond the Z- and X-modes cut-offs as shown in the figure for 

X = 1±Y. The Z-mode becomes quasi-electrostatic (shaded region) for the frequencies given in (3). 

The ordinary modes propagation regions extend to both the left and right of X = 1. The ordinary 

mode becomes quasi-electrostatic rj -* oo, in the region of propagation of the W-mode for X < 1 (also 

shaded). 

3.   Thermal Corrections 

The frequencies of quasi-electrostatic plasma waves for the W- and Z-modes are defined in (3) 

after solving for Ac = 0 and then, in cold plasma theory, 77 —+ 00. Near plasma resonances the waves 

have short wavelengths which can be calculated by considering first order thermal corrections to the 

cold plasma dispersion relation. As a matter of fact the finite values of 77 are obtained by including 

contributions first order in e2 to the elements of the dielectric function, where e = VTH/C. This leads 

to a finite value of the fourth order coefficient A„ which multiplies 774 in the Appleton-Hartree relation 

in (1).  Then following the works of Villalon [1989] and Sazhin [1993], we get that the fourth order 

coefficient A0 becomes 

A0     -     Ac  -  77   ( )    ATH  + 7)*( YXTH 
c c 

ATH     
=     —r sin4ö(l372 + rrW) + 3r2cos40 

x 
+ 2Y2 cos2ßsin2Ö 

1 1 
+ Y2(I - Y)  +1 + r2(i + Y) v-\ 
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where XTH is given in (9) and 

V±1 = -Zl {_**Y)a W(Z±) (5) 

where Z± = (w ± £le)/k\\VTH and W(Z±) is the plasma dispersion function, (see Ichimaru [1973]), 

which for \Z±\ ^> 1 then W —* —1/Z±. Because of the proximity to plasma resonances, to neglect the 

contribution of the imaginary part of W(Z±) in (5) and in the subsequent equations (6) to (8), we 

will assume that \Z±\ > 3; in the numerical calculations of Sec. 6 we always check the validity of this 

assumption. For Ac ~ 0 and rj2 > 1 the solutions to the dispersion relation (1) that correspond to the 

quasi-electrostatic plasma waves, are found from 

4M(—f U4 + *e-^ = 0 (6) 
C T}* 

Then if Bc is finite we put -q ~ r]rH where rfi,H  =  {—BC/ATH)
1
^
2
 (C/VTH), which is very large. If 

Bc —+ 0 and if \Cc/rjTH\ >  —Bc, then we need to solve a cubic equation for r\. If the frequency u> is 

slightly out of resonance because Ac has a finite but small value, we may approximate the solution to 

the dispersion relation as 

r,2 ~ rfcH 
\ Ac c 1    Cc ATH 

1/2 

(7) 
(-Bc ATHy/* VTH       VTH    -ßc 

This approximation describes in a warm plasma, the refractive indices of the quasi-electrostatic W- and 

Z-waves, which otherwise will be infinite in the cold approximation. Since IJTH takes a finite but small 

value the group velocity along the wave vector, i?Sifc, is not necessarily zero. This is to be contrasted 

with the cold plasma approximation for which r\ —> oo, and then i?3)jt —♦ 0. 

If the group velocity becomes zero the wave electric fields may grow in time from the electrostatic 

energy of the RF-pulses radiated by the antennas.  In fact, the quasi-electrostatic wave fields build 

up locally near the transmitter antennas and cannot propagate away to other parts of the plasma. 

This is also the situation found in absolute instabilities which grow as function of time locally within 

restricted plasma regions. On the other hand, it is usually assumed that absolute instabilities absorb 

the free energy that exists in the plasma instead of getting its growth energy from the antennas. In a 

warm plasma, due to the finite but small values of rjTH, the radiated wave fields may convect away as 
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functions of time from the source locations where the sounder-stimulated resonant plasma modes were 

created. The cases of absolute and convective sounder-stimulated plasma waves are studied in more 

details next by considering the contributions of the thermal corrections to the refractive indices and 

group velocities. 

We investigate the limit TJTH -* 0, because of its relevance for the absolute growth of the radiated 

electric fields, as explained above. We call thermal instabilities when the coefficient ATH —» 0. Then 

the thermal refractive index in (6) becomes infinite rfeH —> oo and the wave amplitudes can grow only 

in time without propagating away from the emitting antennas. Under the plasma conditions uP < fie, 

we find that only the Z-mode for w near wuH, satisfies the conditions Ac = 0 and ATH "C 1 necessary 

for thermal singularities. As a matter of fact consider the upper branch of the resonance curves in (3), 

which relates to the extraordinary waves whose frequencies are such that WUH > w > fie. For w near 

WUH and for cos 9 —► 0, we may approximate 

1 4V2 — 1 
tan2e    ~    i(6-3F2+y4) 

3 K ^    ' (1 - y2)2 

ATH    ^   3.X cos4 0 (8) 

For the thermal plasma resonances ATH becomes very small as cos 9 —> 0, and rjTH —► oo for w near 

WJJH-  However the component T)\\ of the thermal refractive index may still be small ( < rj ) since 

then 9 ~ 7r/2. The refractive index for the thermal plasma resonances must be calculated considering 

corrections second order in e2, and then TJ
2
 ~ e-4'3 (BC/XTH)

1/3
 > VTH- 

Here 

.  2.       3o(-15Y2 + 17T4 - 6r6) 
X    =    sin2 9 cos3 9 — '- 

(1 - r2)3 

,      . 2a       a{-l5Y2 + 7Y4 - 4F6) 
+    sin2 9 cos 9 i—: — —i f 91 

(1 - Y2)(l - 4Y2) ia; 

The group velocity is obtained in terms of the cold plasma coefficients, ATH, and their derivatives with 

respect to the wave frequency w. By considering the following 

,    ^     1     3     dAc 
V    ~    2BC + 4TJ

4
 (VTH/C)

2
 ATH 

V " ~fa (10) 

The group velocity component along the wave normal k is i?ff)fc = c/rj'.  Note that as r\' > 1 then 
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$g,k/c ~ I/773 < 1. Also as ATH —* 0 one gets 77' —» 00 and then ?9flii —► 0. 

The ray group velocity along the direction of propagation is -dg = i9S)jt/coso;. The angle cos a is 

given in function of the derivative of the refractive index with respect to the wave angle 6 as [Budden, 

1985] : tana = (drj/dO) TJ'
1
. For cosö sinÖ > 0 we find that üg/c ~ cos0 sin0 rj-1 which is also 

small for rj large. In fact for thermal plasma resonances, if TJTH —* °° then ■dg becomes very small and 

accordingly, the waves electric field can increase their amplitudes locally near the emitting antennas as 

function of time. 

4.   The Ponderomotive Force 

Let us consider the normalized electric field amplitudes 

mellec 

The same normalization applies for the three components of the electric field E, along x, y, and 

z directions as denoted by Si,   i = 1,2,3, respectively.   Now consider that P is the power flux 

density (Watts / m2), and W* the energy density of waves. We consider the energy transfer to the 

quasi-electrostatic fields in the direction of the wave normal Wt = P/i9Sit. From the thermal dispersion 

relation we find 

P 
c -T \E\ 

1_ 
8^ 

2{V-^fr1ATH-Ac- + Cc\ 
c V V 

(12) 

Note that for Ac —* 0 and rj ^> 1, the electric fields become very large near UUH since then ATH 

and T —> 0. Furthermore, the cold plasma theory shows that near wp, Bc —* 0, which is due to the 

occurrence of a cut-off and a plasma resonant mode simultaneously. The thermal refractive index, 

which is very large, sharply turns TJTH ->0asu approaches the plasma frequency.  As a result, the 

electric fields can also be very large near wp if T ~ 0. 

Because of the radiation pressure of the large electric fields, the resulting ponderomotive potential, 

#p, effectively yields a change in the background plasma density. Here <£p is normalized to T"1 so that 
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the changes in the cold plasma density are given by 

n. = ni = Nceq,{-TT±m) (13) 

where Te<i refers to the background electron and ion temperatures. The modified plasma frequency 

üp can be obtained after substituting the plasma density by the expression in (13); as ne -» JVC then 

wp -*• up which is the unperturbed plasma frequency. The ponderomotive potential is calculated as 

function of the tensor 6 which is related to the mobility tensor. In terms of the dielectric tensor, e, we 

find that 6 = -i(Y2/X) (e - 1), Ichimaru [1973]; the tensor components are denoted by Sid, where 

i,j = 1,2,3. We find 

**  =  \ ^~f E *.< l^l2 + \ (^)2 E E ** IS * + (-i)*' ft *•]      (14) 
'=1.3 la        t=l,3 j>« 

with i,j = 1,2,3 corresponding to the x, y, and z components.  For a cold plasma the dielectric 

components are £l>1 = e2<2 = 1 - X/(l - Y*); e3,3 = 1-X; £l,2 = s2A = zXY/(l - Y2);  and the rest 

of them are zero [ Al'pert, 1983]. As an example, we assume that the electric field is 20 V/m and that 

VTH/C = 0.001. Under these conditions £(TH) = 0.5 (c/vTH) £ = 1, and the changes in the background 

plasma density are very significant. 

As a matter of fact the electric fields which are created by in situ" rocket experiments and which are 

detected by the antennas, can be very large(> 20 V/m) near the plasma surrounding the transmitter. 

Thus at a few wavelenghts near the transmitter the plasma could be very inhomogeneous with rapid 

changes in the density.   The theory of plasma eigenmodes presented in the last section must be 

complemented by incorporating the density gradients created by the ponderomotive force. Because 

of a decreasing density the values that the non-linearly modified factor, Q = «p/ne> can take near 

the launching antennas may change rapidly within short distances. As a result, the quasi-electrostatic 

waves which are excited non-linearly due to decreasing values of Q have frequencies which are always 

within the range of propagation for the linear W- and Z-eigenmodes. Henceforth we understand the 

refractive indices of the linear W- and Z-eigenmodes as well as wp and X, represent values which are 

calculated for the unperturbed plasma density which does not account for ponderomotive effects. 
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5.   Electron Heating 

In an ionospheric plasma we have two distinct electron populations of the auroral (primary) and 

the backscatter (secondary) electrons. They can interact with the nearby electric fields that have been 

described by the theory of eigenmodes in the previous three sections. The majority of electrons belong 

to the secondary population whose energies range from 10 eV to about 500 eV. The primary or auroral 

electrons have energies from approximately 1 keV up to above 10 keV, and their distribution functions 

can be anisotropic in pitch angle. Here we restrict our investigations to electron heating by the W- and 

Z-eigenmodes for the less energetic but more numerously populated secondary electrons. 

In all cases particles and waves must satisfy the resonance condition 

w - nüe/tR = &||V|| (15) 

where n is the harmonic number, and JR is the relativistic factor. Here k^ and vy are the components 

along z which is oppositely directed to the geomagnetic field, of the wave normal and the particle 

velocity, respectively.   Efficient interactions between the low energy secondary electrons and the 

quasi-electrostatic W- and Z- plasma eigenmodes require that n = 0 or 1, for k±p <C 1 where p is the 

Larmor radius. Note that wave vectors k^'s which contribute to the resonance condition in (15), can be 

derived from either linear or non-linear wave theory. For linear theory the background plasma density 

is unperturbed.   Nevertheless, as explained in Sec.  4, the non-linearities introduce plasma density 

gradients and a larger number of resonant eigenmodes that depend on the local values of Q. Non-linear 

eigenmodes can be obtained by solving (3) through (6) with Q varying as function of the non-linearly 

modified plasma frequency wp which decreases with the plasma density as explained in Sec. 4. 

The distribution functions of secondary electrons are mainly isotropic in pitch angle, and decrease 

with energy as a power law. We consider the following model for the distribution functions of secondary 

electrons which is consistent with experiments, 

K, 1 
/(*)    = 3/2    (l+v2/WKy+X 
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_     N.      TJK+1) 
■ Ä'      ~      »3/2    T{K- 1/2) (16) 

where K> 2 is the exponent of the differential flux which also contributes in the Gamma functions T. 

Here y/w^ is the most probable speed of resonant electrons. The conservation of total energy in the 

plasma due to interactions between waves and particles, require that over time the following equation 

is satisfied Stix [1992] 

d r        t°° 
—   2rmec

2 f{v){lR-l)v2dv + Wk    =0 (17) 
a   L Jvm J 

where W* is the energy density of waves; here, vm is the smallest resonant velocity which is obtained 

from (15) for cos0 = 1 and for a spectrum of waves centered around ib and u. In fact, the experimental 

observations of the OC rocket, shows that the amount of energy an electron can gain is proportional to 

the electron's initial kinetic energy. In order to explain these observations we consider the effects that 

the distribution functions have upon the energy increment of a single electron. Actually, equation (17) 

effectively demonstrates that the wave energy must be divided over time among the total population 

of secondary electrons.  In addition, since f(v) is isotropic, electrons with the same initial kinetic 

energies will increment their energies by similar amounts. The energy density of waves changes in time 

as Wk ~ cx.p(-2yDt) \E\2, where jD is the linear damping rate Kennel and Wong [1967]. See the 

Appendix for an approximate expression of the damping rate which depends on the derivative of f{v). 

Next, we want to investigate the energy gain by a single electron interacting with the quasi- 

electrostatic fields. Because of the collective effects mentioned above, we assume that the electric field 

amplitudes are not constant independent of time yet, that instead, they decrease their values with time. 

This is due to multiple resonant interactions with the overall population of secondary electrons which 

damp the waves out. A consequence of this multiple interactions is to restrict the amount of energy 

an electron can gain. We normalized the linear damping rates as jD = 27rJTi)|/f2<!. The normalized 

electric field amplitudes are given in (11) and we define the perpendicular and parallel components as: 

£± = y/2£ sine and £|| = 2£ cosö, respectively. The amplitudes of the electric field components are 
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reduced as function of time due to the resonant interactions, we put 

Sx, ||(r) = exp(-7pr) fj.,11 (18) 

where time is normalized so that r = t Sle/2ir. Here, £ is the constant normalized electric field defined 

in (11) for T= 0. 

The theory of Hamiltonian potential wells was developed by Villalon and Burke [1987], Villalon 

[1989], and Ginet and Heinemann [1990]. It gives an estimate of the energy a single electron can gain 

by resonant interactions with the quasi-electrostatic fields. Here we modify the theory of Hamiltonian 

potential wells to include the temporal dependences of the electric fields due to linear damping from 

the distribution functions in (16). We call U - (JR - 70)/7„ the normalized electron energy where JR 

and 70 are the relativistic factors at anytime during the interaction and for r = 0, respectively. For a 

given isolated harmonic n the evolution of the electron energy with time is obtained solving for 

(U + lf(^-f + Vn(U,T) = 0 (19) 

with n = 0,±1,±2,.... The potential wells are discussed extensively in the references given above. By 

solving for Vn(U, r —* 0) = 0, we find the maximum values that the energy of the resonant electron 

can reach in terms of the initial electric fields amplitudes and the initial particles' conditions.  For 

quasi-electrostatic fields we find 

±Vn(U,r)    =    U* - Ejj(r) Kn(U) --Ei(r)  [Kn+1(U) + Kn^(U)} 

Kn{U)    =     /   jZ(k±p')(l + U')dU' (20) 
Jo 

where the Bessel functions are evaluated for the Larmor radius p' = p{U'). We can further estimate 

for the gyroharmonics n = 0,1, the potentials Vn(U, T) by assuming that the arguments of the Bessel 

functions are small which leads 

V0A = **U   U3 - S    ,(r) (21) 

Next, we discuss the implications that the assumption in (18) of time-dependent electric fields has 

on the theory of Hamiltonian potential wells as given by (19) and (20). For reasons of comparison, let 
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us study the case 7# —* 0 so that the electric field amplitudes are now constant independent of time, 

i. e. £(r) —► £. From (21) we obtain the maximum energy an electron can gain as U0  = £p     with 

p =-L, || for the resonances n = 1,0, respectively. The time it takes to reach the maximum energy gain 

U0 is calculated from the analysis by Ginet and Heinemann [1990]: 

Tc = ^—f dA  (22) 
*£2'z Jo   [Z{1-Z3)]V2 K    ' 

where Z = U/£p . Hence we get rc ~ 0.75 £p , with £p standing either for the perpendicular, p =_L, 

or parallel, p =||, components. Thus particles of different initial kinetic energies can be accelerated up 

to the maximum energy ~ £2/3 over a period of time equal to rc. 

As an example we assume that the electric field is |i?| = 20 V/m, and then from (11) one gets 

£ = 2 x 10~3 for Cle = 1 MHz. By assuming constant electric fields, i. e. jz> = 0, the total energy 

gain by an electron is U0 = 0.016. This corresponds to 8.15 KeV, and requires a total interaction time 

of about TC = 50 gyroperiods. However, the OC observations show that electrons can only increase 

their energies by an amount which is proportional to their kinetic energy and which is always smaller 

than the maximum energy, U0, allowed for constant electric fields. In addition, it also shows that this 

happens over interactions times of about less than a few gyroperiods.  In order to understand these 

experimental results we assume that, during their interactions with the waves, an electron increases its 

energy by the limited amount AK. The energy increment AÜT which is normalized to (mc2)~x and 

derived from the experimental results, is such that AK < fj0. Since for secondary electrons Z<1, 

the time it takes to increase the energy by AK is approximately given by n ~ 2/(T£) y/AK. The 

latter approach can reasonably be used to predict the increment in electron energies if the number of 

gyroperiods is small T* -C TC in agreement with observations. 

Our previous discussions effectively demonstrate that the theory which is described by the 

Hamiltonian potentials with 7^ = 0 is incomplete. As shown above, the approximation of constant 

electric fields gives reasonably good estimates of acceleration times under assumptions of limited energy 

gain AK for the electrons, i. e.  Auf < Ü0.  Yet it does not account for the restrictions that the 

electrons can only increment their energy by this relatively small amounts. This is because under the 
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limit 7£> —► 0, the collective effects of the overall electron population upon the wave amplitudes are 

essentially ignored. To include those effects we have developed model equations in (19) and (20), in 

terms of electric fields amplitudes which are depleted in time. This approximation is unique because it 

requires knowledge of the background distribution functions of electrons and its derivative with respect 

to v, to find out the actual energy gain by a single electron. For small values of JD , the approxiamtion 

yields that the actual energy gain by an electron is 

2 £*>* 
UD  — ö 

i /   3  fz> ^ 
1 " «P(-j £271) (23) 

3  ID 

Thus, due to the reduced amplitudes of the electric fields, an electron gain less energy than that 

predicted by the original unperturbed Hamiltonian theory of Villalon and Burke [1987]. In fact, for 

small damping jD —► 0, we recover the results of the unperturbed theory ÜD  -* Ü0 ~ £2'3. For strong 

damping jD » £2/3, we obtain UD  -► 2/3 (£4/3/jD), and then ÜD < £2<z. Since damping rates are 

proportional to the number of electrons the most populated parts of the distributions can in overall 

increase their energy more than less populated ones. However the energy increment per electron can be 

small for the large population because that energy must be divided among more particles. 

6.   Numerical examples 

To illustrate the theoretical analysis of previous sections, we consider wave eigenmodes that 

propagate in a tenuous ionospheric auroral plasma, where the plasma frequency is always smaller than 

the electron gyrofrequency, such that Sle ~ 1.2 Mhz. In our calculations we take three different values 

for the ratio Q = wp/Cle = 0.33,0.66, and 0.85, and as an example we assume that vTH/c = 0.001. The 

frequencies of resonant plasma modes which can heat the ambient electrons are described by (3) and 

depicted in Fig. 2. 

Figure 3 represents the frequencies w/fie of the quasi-electrostatic W- and Z-modes (77 —► 00) as 

functions of cos 6; where 6 is the angle between k and z (oppositely directed to B0).  They are the 

solutions to equation (3) for the three different values of Q as indicated. The curves below u/Qe = 1 
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are the ordinary plasma wave resonances (W-modes) for three values of uip/üe as indicated. Note that 

as w -» wp, cosö -+ 1 and asw-»0 then cosö -+ 0. For the extraordinary branch of Z-mode plasma 

resonances we have that when w —► fie, cosö —► 1 and when w —► WUH then cosö -> 0. 

The refractive indices rj for these eigenmodes are infinite in cold plasma theory, and we need to 

consider the thermal .corrections to find out the finite values for 77; we take vTff/c = 0.001 which 

corresponds to ~ 2900° K. The values of rj2 ~ c/vTH are obtained by solving for (6). Figure 4 represents 

the parallel components 77JJ = (77 cosö)2 of the W-eigenmodes versus frequency w/tie, for w < wp and 

three values of Q = up/tle. Once the refractive indices are known in a warm plasma approximation, 

we can solve for the resonance condition in (15) which furnishes the energies and uy of the resonant 

electrons.   For the first gyroharmonic n = 1, Fig.  5 represents the resonant parallel velocities of 

electrons interacting with the W-eigenmodes, v\\ =v cos a normalized to c_1 versus w/toe, where o is 

the particle's pitch-angle. Note that v\\ may be in the range of energies of the auroral beam population 

if Q > 0.66, implying w close to up. When the plasma density is low so that Q < 0.33, then VJJ is so 

large that interactions are not possible with the available electron populations. This situation may be 

created by density depletions as produced by the large electric fields due to the ponderomotive force, 

which may not allow for electron acceleration near the transmitter. Other gyroharmonics will not be 

represented here but the Landau resonance leads to uy/c = j;"1 ~ {c/vTH)112, and values for v$/c, can 

be obtained from the results in Fig. 4. 

Within the extraordinary branch the Z-eigenmodes are such that their frequencies extent is 

fie < u) < WUH.  For the Z-modes, Fig. 6 represents the refractive indices versus w/ne considering 

the three values of Q = 0.33, 0.66, and 0.85. The upper panel contains r}2 as obtained solving for (6). 

The lower panel rj2 = rj2 cos29, where cosfl = 1 and 0 for w = fie, and wUH, respectively. In all cases 

presented in this paper we require that the waves were not heavily damped and then that the argument 

of the plasma function in (5) was such that \Z±\ > 3. Those modes near the electron gyrofrequency are 

strongly Landau damped, |Z±| < 3, which leads to the kind of spiky behaviour near the gyrofrequency 

as shown in the figures. Near the upper hybrid the refractive indices are very large because AT.H — 0. 
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However the parallel components m, are not so large since those waves propagate almost perpendicular 

toB0. 

Figure 7 represents the resonant parallel velocities of electrons which interact with the Z-eigenmodes 

versus u/ae. The t^'s are obtained from (15) by assuming interactions with the first gyroharmonic 

n = 1. We see that they are smaller than those found for the W-eigenmodes. We can also obtain for 

other gyroharmonics the resonant velocities wj,, but these are not represented here. 

The propagation of the W- and Z- eigenmodes are described by the group velocities tfg and the 

angle ß with respect to z which is oppositely directed to the geomagnetic field. Here a is the angle 

between k and \. Figure 8 represents the cosines of the angles 6, a, and ß. The upper and lower 

panels correspond to the W- and Z-modes, respectively. In both panels we take wp/Cle = 0.66, similar 

behaviour is found for the others values of Q. For the W-mode we always find that for X < 1, cos a ~ 0. 

In addition, near wp the W-modes have group velocities almost perpendicular to the geomagnetic fields 

and then, electron acceleration may be observed near the transmitter. For the Z-mode, as shown in 

the lower panel, the group velocity angle ß with respect to z is very close to the field line which allows 

acceleration to be detected by both subpayloads. 

Figure 9 describes some calculations for the secondary electron population, whose energies < 500 

eV. The experimental OC observations show that electrons effectively increased their energy by about a 

factor of two. Accordingly, we estimate the time (in number of gyroperiods) that it takes for an electron 

to double its initial kinetic energy, K given in eV, versus ln(tf). To calculate the interaction time we 

use the Hamiltonian equations in (19) through (22). As an example, we assume a constant value of 

E = 20 V/m. In general, if the electric fields were not depleted by their interactions with the plasma, 

an electron could gain approximately 8 keV over many gyroperiods as discussed in Sec. 5. Nevertheless 

it takes less than a few gyroperiods to double the kinetic energy of secondary electrons. 

The numerical calculations just presented illustrate that generally the theory of warm plasma 

eigenmodes for the W- and Z- plasma waves is consistent with OC experimental observations. The large 

refractive indices extend over a broad range of propagation angles and can interact with many electrons 

118. 



18 

of different energies and pitch angles. The analysis for secondary electron acceleration was presented 

in Section 5 and compare with the experimental observations. Although in the numerical applications 

we only treat constant electric fields, we came out with interactions times which were small (i. e. a 

few gyroperiods), and which allowed to increment the electron energies by the amounts predicted by 

the experiments. We leave for future work the more detailed investigations that consider the particle 

distribution functions and that apply some of the concepts introduced in Section 5.  By using the 

damping rates that deplete the electric fields in time we incorporate the contribution of distribution 

functions of electrons. These distributions functions can determine intrinsically the energy increments 

of a single electron in terms of their parameters and those of the plasma. 

7.     Summary and Discussion 

We have presented a theory to explain the propagation of radiowaves and plasma heating in 

a tenuous auroral plasma.  The ratio between the plasma and electron cyclotron frequencies was 

Q = wp/ne < 0.5.   Prom cold plasma theory, the quasi-electrostaic waves of the ordinary and 

extraordinary branches fall within the propagation regions for the whistler (W-) and Z- eigenmodes, 

and their frequency ranges are u < L,P and Qe < uUH, respectively. Our main contributions are: 

1) We include first order thermal corrections (VTH/C < 1) to obtain the refractive indices V, and wave 

amplitudes of quasi-electrostatic W- and Z- eigenmodes. This gives that r, ~ {c/vTH)1/2 {-BC/ATH)
1IA

, 

which depends on frequency and wave vector through the coefficients Bc and ATH as defined in (2) 

and (4). 

2) The theory shows a thermal resonant plasma wave near u>UH, which happens when the cold and 

warm plasma coefficients Ac = 0 and ATH - 0 simultaneously. The electric field amplitudes become 

very large for the upper hybrid eigenmode and the electric energy is highly concentrated since the group 

velocity i?fl —> 0. 

3) The ponderomotive force of large amplitude quasi-electrostatic fields, effectively can create 

plasma density cavities near the transmitting antenna. Therefore a large number of eigenmodes are also 
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non-linearly excited whose refractive indices can change rapidily with wave normal angles and plasma 

density gradients. The non-linear refractive indices can satisfy the resonance condition for interactions 

with many electrons of different energies and pitch-angles. 

4) We have modified the Hamiltonian potential wells theory for the wave-particle interactions to 

include the depletion of the electric fields as function of time. Approximate expressions are given for 

the amount of energy an electron can gain by including the damping rates of the electric fields. 

5) Plasma heating results from interactions between the W- and Z-eigenmodes and the secondary 

(< 500 eV) electron distribution. The energy gain by a single electron is a fraction of its initial kinetic 

energy. The time it takes to gain the energy is calculated for some numerical examples. 

As a matter of fact, the non-linear heating deserved further attention. The electric fields and power 

distributions, which lead to electron acceleration, must be calculated. The radiated fields far removed 

from the antennas are mainly cast into electromagnetic waves with finite group velocities [Jordan and 

Balmain, 1968]. The nearby-radiated fields formed a sheath close to the antennas which, in the near 

stationary case, are composed mostly of quasi-electrostatic eigenmodes. The nearby sheath fields have 

group velocities which are so small that do not easily convect away from the antennas radiation regions. 

The distributions of the sheath fields in space need to be investigated to give a more precise estimate of 

non-linear effects and plasma acceleration. 

Appendix 

The linear damping (growth) rates of wave fields interacting with electrons that satisfy the 

resonance condition in (15), are given by Lyons and Williams [1984].   Here we study for the 

secondary electrons whose distribution functions are described by (16), the linear damping rates of 

quasi-electrostatic wave eigenmodes. 

The waves are damped out due to their interactions with low energy isotropic distribution functions 

of electrons.  The linear damping rates are approximately obtained for the distribution functions in 
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(16), and by integrating in velocity space 0 < v < oo. We get 

1D_       _x * c     K,    1     9n,t ,„., 

u> -  AMä4(/C+2) v^^c hi m K ' 

where /IR = sin2 OR, the most probable electron pitch-angle that satisfy the resonance condition. It can 

be approximated as cos aR ^ {c/wK) (1 - nY)/r)num, and u^ = 3 K/2(K - 3/2). Here ©„,* is a function 

of wave amplitudes as 

1 
Qn,k   =   2 Ek,L Jn-1  + Ek,R.Jn+l   —   v2 Ek^\ Jn (25) 

where the polarizations are expressed by L, R, || referring to the left, right, or along the geomagnetic 

field components. Here the argument of the Bessel functions, Jv, is k± p and v — n ± 1 and n. 
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Figure 1.   Geometrical representation of the waves and electrons parameters.  The relevant 

angles between z and k, and -dg, are represented by 6 and ß, respectively. The electron velocity 

v, and the pitch angle a are also represented. 

Figure 2. The refractive indices rf are depicted versus u/tte as obtained from the Appleton- 

Hartree equation, by assuming that up/Qe = 0.666.  The ordinary and extraordinary modes 

branches are shown.   The plasma resonances where rf -► oo, in the shaded regions for the 

propagation of the W- and Z- modes are also indicated. 

Figure 3. Frequencies of the resonant modes u/tte versus cos 0, the angle between the wave 

vector and geomagnetic field.  The Z- and W- eigenmodes are above and below u = Q,e and 

u = Up, respectively. We represent three values of wp/fie = 0.33,0.66 and 0.85 as indicated. 

Figure 4.  Parallel refractive indices 77J, versus u/Qe for the W-eigenmode and three values 

of up/tte as indicated. They are obtained by introducing first-order thermal corrections with 

VTB/C = 0.001. 

Figure 5.   Parallel velocity of resonant electrons versus oj/Qe for the W-eigenmodes whose 

refractive indices are represented in Fig. 4 and for the harmonic n = 1; the values of u?p/fte are 

also indicated. 

Figure 6.   Parallel refractive indices versus Lj/Qe for the Z-mode, and the three values of 

up/ne and for VTH/C = 0.001. The upper panel A) represents if which is the largest near the 

upper-hybrid frequency. The lower panel B) represent the parallel component 77J. 

Figure 7.   Parallel velocity of resonant electrons versus w/fie for the Z-eigenmodes whose 

refractive indices are represented in Fig. 6; the values of wp/J2e are also indicated. 

Figure 8.   Cosine of propagation angles a, ß, and B as defined in Fig.   1 versus w/tie for 

up/ne = 0.66. The upper A) and lower B) panels contain the W- and Z- modes, respectively. 
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Figure 9. Time in number of gyroperiods versus ln(üf), where K is the electron energy. We 

consider resonant interactions with secondary electrons. We assume that the initial kinetic 

energy doubles over the period of time shown in the figure. 
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Table of symbols 

wp  plasma frequency. 

fie  electron cyclotron frequency. 

uun  upper-hybrid frequency. 

u  wave frequency. 

Q = Wp/fie, X = (up/u)2, Y = üe/üj  frequencies ratios. 

B0  geomagnetic field. 

k, % ±    wave vector and its components. 

77 = ck/uj  wave refractive index. 

VTH  thermal refractive index. 

0  wave vector angle with B0. 

ß group velocity (ray) angle with B0. 

<*  angle between wave vector and ray direction. 

a   electron pitch angle. 

W— and Z— eigenmodes  whistler and extraordinary waves. 

VTH  electron thermal velocity. 

e = VTH/C  the thermal velocity divided by speed of light. 

Ac, Bc, Cc   cold plasma dispersion relation coefficients. 

A0  total fourth order coefficient including thermal corrections. 

ATH and XTE  thermal corrections. 

W(Z±)> Z± = (w ± fie)/Ä:||ü||    Plasma dispersion function and its argument. 

*V tig,k   group velocity and its component along the wave vector. 

P power flux density. 
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Wk  energy density of waves. 

E  electric field amplitude. 

£  normalized electric field as in (11). 

^(r)  time-dependent normalized electric field as in (18). 

r?  normalized ponderomotive force. 

nei fti   electron and ion modified plasma densities. 

■"c  cold unperturbed plasma density. 

wp  non-linearly modified plasma frequency. 

■*e,t  electron and ion temperatures. 

£■> i. mobility and dielectric tensors. 

vi v\\,±.   electron velocity and its components. 

P = v±/fie    Larmor radius. 

7ä> lo relativistic factors at different times. 

ID-, ID = 2x72j/fie linear damping rates. 

f(v)  electron distribution function. 

V^fc  electron most probable speed. 

vm  smallest resonant velocity. 

T = 2-Kt/\te  normalized time. 

v = mho — 1  effective energy gain . 

Vn(U, T)  time-dependent Hamiltonian potential wells. 

71  gyroharmonic number. 

"°   maximum allowed energy gain from theory. 

Tc   total interaction time for Ü0. 
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K  empirical electron kinetic energy in eV. 

A-K"  limited energy gain (empirical value). 

rL  corresponding interaction time for AK. 

UD  limited energy gain from theory. 
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